首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human Ro ribonucleoproteins (RNPs) are autoantigenic particles of unknown function(s) that consist of a 60-kDa protein (Ro60) associated with one hY RNA (hY1-5). Using a modified yeast three-hybrid system, named RNP interaction trap assay (RITA), we cloned a novel Ro RNP-binding protein (RoBPI), based on its property to interact in vivo in yeast with an RNP complex made of recombinant Ro60 (rRo60) protein and hY5 (rhY5) RNA. RoBPI cDNA contains three conserved RNA recognition motifs (RRM) and is present as a family of isoforms differing slightly at their 5' end. The 2.0-kb RoBPI mRNA was detected in all human tissues tested. Highly homologous cDNA sequences were found in banks of expressed sequence tags (ESTs) from mice. Two-hybrid, three-hybrid, and RITA experiments respectively established that 60 kDa RoBPI did not interact in yeast with rRo60 alone, with rhY5 RNA alone, or with bait RNPs consisting of rRo60 and recombinant hY1, hY3, or hY4 RNAs. RoBPI coimmunoprecipitated with Ro RNPs from HeLa cell extracts and partially colocalized with Ro60 in nuclei of cultured cells. Because hY5 RNA and RohY5 RNPs are recent evolutionary additions seen only in primates, but RoBPI seems more conserved, their interaction may represent a gain of function for Ro RNPs. Alternatively, interaction of RohY5 RNPs with RoBPI may have no functional bearing, but may underlie some of the unique biochemical and immunological properties of these RNPs.  相似文献   

2.

Background

Ro ribonucleoprotein particles (Ro RNPs) consist of a non-coding Y RNA bound by Ro60, La and possibly other proteins. The physiological function of Ro RNPs is controversial as divergent functions have been reported for its different constituents. We have recently shown that Y RNAs are essential for the initiation of mammalian chromosomal DNA replication, whereas Ro RNPs are implicated in RNA stability and RNA quality control. Therefore, we investigate here the functional consequences of RNP formation between Ro60, La and nucleolin proteins with hY RNAs for human chromosomal DNA replication.

Methodology/Principal Findings

We first immunoprecipitated Ro60, La and nucleolin together with associated hY RNAs from HeLa cytosolic cell extract, and analysed the protein and RNA compositions of these precipitated RNPs by Western blotting and quantitative RT-PCR. We found that Y RNAs exist in several RNP complexes. One RNP comprises Ro60, La and hY RNA, and a different RNP comprises nucleolin and hY RNA. In addition about 50% of the Y RNAs in the extract are present outside of these two RNPs. Next, we immunodepleted these RNP complexes from the cytosolic extract and tested the ability of the depleted extracts to reconstitute DNA replication in a human cell-free system. We found that depletion of these RNP complexes from the cytosolic extract does not inhibit DNA replication in vitro. Finally, we tested if an excess of recombinant pure Ro or La protein inhibits Y RNA-dependent DNA replication in this cell-free system. We found that Ro60 and La proteins do not inhibit DNA replication in vitro.

Conclusions/Significance

We conclude that RNPs containing hY RNAs and Ro60, La or nucleolin are not required for the function of hY RNAs in chromosomal DNA replication in a human cell-free system, which can be mediated by Y RNAs outside of these RNPs. These data suggest that Y RNAs can support different cellular functions depending on associated proteins.  相似文献   

3.
The hY RNAs are a group of four small cytoplasmic RNAs of unknown function that are stably associated with at least two proteins, Ro60 and La, to form Ro ribonucleoprotein complexes. Here we show that the heterogeneous nuclear ribonucleoproteins (hnRNP) I and K are able to associate with a subset of hY RNAs in vitro and demonstrate these interactions to occur also in vivo in a yeast three-hybrid system. Experiments performed in vitro and in vivo with deletion mutants of hY1 RNA revealed its pyrimidine-rich central loop to be involved in interactions with both hnRNP I and K and clearly showed their binding sites to be different from the Ro60 binding site. Both hY1 and hY3 RNAs coprecipitated with hnRNP I in immunoprecipitation experiments performed with HeLa S100 extracts and cell extracts from COS-1 cells transiently transfected with VSV-G-tagged hnRNP-I, respectively. Furthermore, both anti-Ro60 and anti-La antibodies coprecipitated hnRNP I, whereas coprecipitation of hnRNP K was not observed. Taken together, these data strongly suggest that hnRNP I is a stable component of a subpopulation of Ro RNPs, whereas hnRNP K may be transiently bound or interact only with (rare) Y RNAs that are devoid of Ro60 and La. Given that functions related to translation regulation have been assigned to both proteins and also to La, our findings may provide novel clues toward understanding the role of Y RNAs and their respective RNP complexes.  相似文献   

4.
The human Y RNAs, small RNAs with an unknown function, are complexed with at least three proteins: the 60,000 M(r) Ro protein (Ro60), the 52,000 M(r) Ro protein (Ro52) and the La protein (La). In this study we examined the intermolecular interactions between the components of these so-called Ro ribonucleoprotein (Ro RNP) complexes. Incubation of 32P-labelled hY1 RNA in HeLa S100 extract allows the reconstitution of Ro RNP complexes, which were analysed by immunoprecipitation with monospecific antisera. By immunodepletion of HeLa S100 extracts for either Ro60, Ro52 or La, followed by supplementation with recombinant Ro60 or La, it was demonstrated that both Ro60 and La bind to hY1 RNA directly without being influenced by one of the other proteins. However, binding of Ro52 to hY1 RNA required the presence of Ro60, which strongly suggests that the association of Ro52 with Ro RNPs is mediated by protein-protein interactions between Ro60 and Ro52.  相似文献   

5.
The interactions between Ro and La proteins and hY RNAs have been analysed. The binding site for the 60 kDa Ro protein on hY RNAs is shown to be the terminal part of the base paired stem structure, which contains the most highly conserved sequence among hY RNAs. The bulged C-residue within this region plays an important role in the recognition by this protein. The same regions of hY RNAs are essential for the association of the 52 kDa Ro protein with the RNAs, strongly suggesting that the 60 kDa Ro protein is required for the 52 kDa Ro protein to bind, presumably via protein-protein interactions, to Ro RNPs. The binding site for the La protein on hY RNAs is shown to be the oligouridylate stretch near the 3'-end of the RNAs, which is also recognized when additional nucleotides flank this motif at the 3'-side. Additional sequence elements in hY3 and hY5, but not in hY1, are bound by the La protein as well. Deletion mutagenesis showed that the RNP motif, previously identified in many ribonucleoprotein (RNP) proteins and in some cases shown to be almost sufficient for the interaction with RNA, of both the 60 kDa Ro and the La protein are not sufficient for the interaction with hY RNAs. Substantial parts of these proteins flanking the RNP motif are needed as well. It is likely that they stabilize the correct conformation of the RNP motif for RNA binding.  相似文献   

6.
Ro RNPs are evolutionarily conserved ribonucleoprotein particles that consist of a small RNA, known as Y RNA, associated with several proteins, such as La, Ro60, and Ro52. The Y RNAs (Y1-Y5), which are transcribed by RNA polymerase III, have been shown to reside almost exclusively in the cytoplasm as Ro RNPs. To obtain more insight into the nuclear export pathway of Y RNAs, hY1 RNA export was studied in Xenopus laevis oocytes. Injection of various hY1 RNA mutants showed that an intact Ro60 binding site is a prerequisite for nuclear export, whereas the presence of an intact La binding site resulted in strong nuclear retention of hY1 RNA. Competition studies with various classes of RNAs indicated that, in addition to Ro60, another titratable factor was necessary for nuclear export of hY1 RNA. This factor appears also to be involved in nuclear export of tRNA. Because export of hY1 RNA could not be blocked by a synthetic peptide containing the recently identified nuclear export signal of the HIV-1 Rev protein, nuclear export of hY1 RNA does not seem to be dependent on a Rev-like nuclear export signal.  相似文献   

7.
The Ro autoantigen is a mammalian cellular ribonucleoprotein (RNP) of unknown function. We have demonstrated that hY1 and hY4 Ro RNAs are associated with erythrocyte Ro RNPs and represent a subset of the four hY RNAs found in HeLa cell and leukocyte Ro RNPs. We have cloned and sequenced hY4 RNA, the only hY RNA not sequenced previously, from a polymerase chain reaction amplified erythrocyte hY cDNA library. Sequencing of the erythrocyte hY RNAs in conjunction with Northern blot analysis confirms that the erythrocyte hY RNAs contain the same sequences as the respective HeLa cell RNAs of similar mobility. Ribonuclease inhibition activity has been found in erythrocytes and this activity inhibits the degradation of hY3 and hY5 in leukocyte lysates thereby favoring the possibility that the presence of hY1 and hY4 in erythrocytes is the result of differential expression of the hY RNAs in erythrocyte precursors.  相似文献   

8.
RNA chaperone activity of protein components of human Ro RNPs   总被引:2,自引:0,他引:2       下载免费PDF全文
Ro ribonucleoprotein (RNP) complexes are composed of one molecule of a small noncoding cytoplasmic RNA, termed Y RNA, and the two proteins Ro60 and La. Additional proteins such as hnRNP I, hnRNP K, or nucleolin have recently been shown to be associated with subpopulations of Y RNAs. Ro RNPs appear to be localized in the cytoplasm of all higher eukaryotic cells but their functions have remained elusive. To shed light on possible functions of Ro RNPs, we tested protein components of these complexes for RNA chaperone properties employing two in vitro chaperone assays and additionally an in vivo chaperone assay. In these assays the splicing activity of a group I intron is measured. La showed pronounced RNA chaperone activity in the cis-splicing assay in vitro and also in vivo, whereas no activity was seen in the trans-splicing assay in vitro. Both hnRNP I and hnRNP K exhibited strong chaperone activity in the two in vitro assays, however, proved to be cytotoxic in the in vivo assay. No chaperone activity was observed for Ro60 in vitro and a moderate activity was detected in vivo. In vitro chaperone activities of La and hnRNP I were completely inhibited upon binding of Y RNA. Taken together, these data suggest that the Ro RNP components La, hnRNP K, and hnRNP I possess RNA chaperone activity, while Ro60-Y RNA complexes might function as transporters, bringing other Y RNA binding proteins to their specific targets.  相似文献   

9.
Xenopus laevis oocytes have been used to determine the intracellular localization of components of Ro ribonucleoprotein particles (Ro RNPs) and to study the assembly of these RNA-protein complexes. Microinjection of the protein components of human Ro RNPs, i.e., La, Ro60, and Ro52, in X. laevis oocytes showed that all three proteins are able to enter the nucleus, albeit with different efficiencies. In contrast, the RNA components of human Ro RNPs (the Y RNAs) accumulate in the X. laevis cytoplasm upon injection. Localization studies performed at low temperatures indicated that both nuclear import of Ro RNP proteins and nuclear export of Y RNAs are mediated by active transport mechanisms. Immunoprecipitation experiments using monospecific anti-La and anti-Ro60 antibodies showed that the X. laevis La and Ro60 homologues were cross-reactive with the respective antibodies and that both X. laevis proteins were able to interact with human Y1 RNA. Further analyses indicated that: (a) association of X. laevis La and Ro60 with Y RNAs most likely takes place in the nucleus; (b) once formed, Ro RNPs are rapidly exported out of the nucleus; and (c) the association with La is lost during or shortly after nuclear export.  相似文献   

10.
Ro RNPs are small cytoplasmic RNA-protein complexes of unknown function that have been found in all metazoan cells studied so far. In human cells, Ro RNPs consist of one of four small RNA molecules, termed hY RNAs and at least two well-characterized proteins, Ro60 and La. In previous Xenopus laevis oocyte microinjection studies, we showed that an intact Ro60 binding site (Stem-loop 1) is a prerequisite for efficient nuclear export of hY1 RNA, whereas an intact La-binding site promotes nuclear retention (Simons et al. RNA, 1996, 2:264-273). Here we present evidence that the distal half (Stem 2) of the conserved base-paired stem structure found in all hY RNAs also plays a critical role in the export process. A minimal RNA molecule containing this region, L1S2 RNA, competes effectively for the export of full-length hY1 RNAs and is itself exported very rapidly in a Ro60-independent and RanGTP-dependent manner. Mutational analyses of this RNA shows that a 5'/3' terminal double-stranded stem structure (>10 bp) of no specific nucleotide sequence constitutes a novel nuclear export element (NEE). Cross-competition studies indicate that this type of NEE may also be involved in export of other classes of RNAs. Like full-length hY1 RNA, L1S2 RNA also competes for export of ET-202 RNA, an RNA that was selected for its efficient nuclear export in the presence of the nuclear transport inhibitor, VSV Matrix protein (Grimm et al. Proc Natl Acad Sci USA, 1997, 94:10122-10127). However, export of L1S2 RNA is strongly inhibited by VSV-M protein, showing that these RNAs use partially overlapping, but not identical export pathways. We propose that export of Y RNAs is mediated by two contiguous cis-acting elements in the 5'/3' double-stranded stem region that is conserved between different Y RNAs.  相似文献   

11.
The coexistence of autoantibodies to ribonucleoproteins (RNP) in sera of patients with systemic lupus erythematosus has been attributed to intermolecular determinant spreading among physically associated proteins. Recently, we showed that murine Ab responses to rRo60 or Ro60 peptides were diversified unexpectedly to small nuclear RNP. In this investigation, the mechanisms for this autoantibody diversification were examined. Intramolecular determinant spreading was demonstrated in mice immunized with human or mouse Ro60316-335. Immune sera depleted of anti-peptide Ab immunoprecipitated Ro60-associated mY1 and mY3 RNA and remained reactive to a determinant on Ro60128-285. Absorption with the immunogen depleted the immune sera completely of anti-Golgi complex Ab (inducible only with human Ro60316-335) and anti-La Ab, and reduced substantially Ab to SmD and 70-kDa U1RNP. Mouse rRo60 completely inhibited the immune sera reactivity to La, SmD, and 70-kDa U1RNP. However, La, SmD, and 70-kDa U1RNP preferentially inhibited the antiserum reactivities to these Ags, respectively. Affinity-purified anti-La Ab were reactive with Ro60, La, SmD, and 70-kDa U1RNP. These results provide evidence that a population of the induced autoantibodies recognized determinants shared by these autoantigens. Lack of sequence homology between Ro60316-335 and La, SmD, or 70-kDa U1RNP suggests that these determinants are conformational. Interestingly, similar cross-reactive autoantibodies were found in NZB/NZW F1 sera. Thus, a single molecular mimic may generate Ab to multiple RNP Ags. Furthermore, cross-reactive determinants shared between antigenic systems that are not associated physically (Ro/La RNP and small nuclear RNP) may be important in the generation of autoantibody diversity in systemic lupus erythematosus.  相似文献   

12.
Human Ro ribonucleoproteins (RNPs) are composed of one of the four small Y RNAs and at least two proteins, Ro60 and La; association of additional proteins including the Ro52 protein and calreticulin has been suggested, but clear-cut evidence is still lacking. Partial purification of Ro RNPs from HeLa S100 extracts allowed characterization of several subpopulations of Ro RNPs with estimated molecular masses of between 150 and 550 kDa. The majority of these complexes contained Ro60 and La, whereas only a small proportion of Ro52 appeared to be associated with Ro RNPs. To identify novel Y RNA-associated proteins in vitro, binding of cytoplasmic proteins to biotinylated Y RNAs was investigated. In these reconstitution experiments, several proteins with estimated molecular masses of 80, 68, 65, 62, 60 and 53 kDa, the latter two being immunologically distinct from Ro60 and Ro52, respectively, appeared to bind specifically to Y RNAs. Furthermore, autoantibodies to these proteins were found in sera from patients with systemic lupus erythematosus. The proteins bound preferentially to Y1 and Y3 RNA but, with the exception of the 53-kDa protein, only weakly to Y4 RNA and not at all to Y5 RNA. Coprecipitation of the 80, 68, 65, and 53-kDa proteins by antibodies to Ro60 and La was observed, suggesting that at least a proportion of the novel proteins may reside on the same particles as La and/or Ro60. Finally, the binding sites for these proteins on Y1 RNA were clearly distinct from the Ro60-binding site involving a portion of the large central loop 2, which was found to be indispensable for binding of the 80, 68, 65 and 53-kDa proteins, as well as the stem 3-loop 3 and stem 2-loop 1 regions. Interestingly, truncation of the La-binding site resulted in decreased binding of the novel proteins (but not of Ro60), indicating La to be required for efficient association. Taken together, these results suggest the existence of further subpopulations of Ro RNPs or Y RNPs, consistent with the heterogeneous characteristics observed for these particles in the biochemical fractionation experiments.  相似文献   

13.
14.
15.
Noncoding RNAs are recognized increasingly as important regulators of fundamental biological processes, such as gene expression and development, in eukaryotes. We report here the identification and functional characterization of the small noncoding human Y RNAs (hY RNAs) as novel factors for chromosomal DNA replication in a human cell-free system. In addition to protein fractions, hY RNAs are essential for the establishment of active chromosomal DNA replication forks in template nuclei isolated from late-G(1)-phase human cells. Specific degradation of hY RNAs leads to the inhibition of semiconservative DNA replication in late-G(1)-phase template nuclei. This inhibition is negated by resupplementation of hY RNAs. All four hY RNAs (hY1, hY3, hY4, and hY5) can functionally substitute for each other in this system. Mutagenesis of hY1 RNA showed that the binding site for Ro60 protein, which is required for Ro RNP assembly, is not essential for DNA replication. Degradation of hY1 RNA in asynchronously proliferating HeLa cells by RNA interference reduced the percentages of cells incorporating bromodeoxyuridine in vivo. These experiments implicate a functional role for hY RNAs in human chromosomal DNA replication.  相似文献   

16.
Gene encoding human Ro-associated autoantigen Y5 RNA.   总被引:2,自引:0,他引:2       下载免费PDF全文
Ro ribonucleoproteins are composed of Y RNAs and the Ro 60 kDa protein. While the Ro 60 kDa protein is implicated in an RNA discard pathway that recognizes 3'-extended 5S rRNAs, the function of Y RNAs remains unknown [O'Brien,C.A. and Wolin,S.L. (1995) Genes Dev. 8,2891-2903]. Y5 RNA occupies a large fraction of Ro 60 kDa protein in human Ro RNPs, contains an atypical 3'-extension not found on other Y RNAs, and constitutes an RNA antigen in certain autoimmune patients [Boulanger et al. (1995) Clin. Exp. Immunol. 99, 29-36]. An overabundance of Y RNA retroposed pseudogenes has previously complicated the isolation of mammalian Y RNA genes. The source gene for Y5 RNA was isolated from human DNA as well as from Galago senegalis DNA. Authenticity of the hY5 RNA gene was demonstrated in vivo and its activity was compared with the hY4 RNA gene that also uses a type 3 promoter for RNA polymerase III. The hY5 RNA gene was subsequently found to reside within a few hundred thousand base pairs of other Y RNA genes and the linear order of the four human Y RNA genes on chromosome 7q36 was determined. Phylogenetic comparative analyses of promoter and RNA structure indicate that the Y5 RNA gene has been subjected to positive selection during primate evolution. Consistent with the proposal of O'Brien and Harley [O'Brian,C.A. and Wolin,S.L. (1992) Gene 116, 285-289], analysis of flanking sequences suggest that the hY5 RNA gene may have originated as a retroposon.  相似文献   

17.
Box H/ACA ribonucleoprotein particles (RNPs) catalyze RNA pseudouridylation and direct processing of ribosomal RNA, and are essential architectural components of vertebrate telomerases. H/ACA RNPs comprise four proteins and a multihelical RNA. Two proteins, Cbf5 and Nop10, suffice for basal enzymatic activity in an archaeal in vitro system. We now report their cocrystal structure at 1.95-A resolution. We find that archaeal Cbf5 can assemble with yeast Nop10 and with human telomerase RNA, consistent with the high sequence identity of the RNP components between archaea and eukarya. Thus, the Cbf5-Nop10 architecture is phylogenetically conserved. The structure shows how Nop10 buttresses the active site of Cbf5, and it reveals two basic troughs that bidirectionally extend the active site cleft. Mutagenesis results implicate an adjacent basic patch in RNA binding. This tripartite RNA-binding surface may function as a molecular bracket that organizes the multihelical H/ACA and telomerase RNAs.  相似文献   

18.
Alu RNP and Alu RNA regulate translation initiation in vitro   总被引:5,自引:1,他引:4       下载免费PDF全文
Alu elements are the most abundant repetitive elements in the human genome; they emerged from the signal recognition particle RNA gene and are composed of two related but distinct monomers (left and right arms). Alu RNAs transcribed from these elements are present at low levels at normal cell growth but various stress conditions increase their abundance. Alu RNAs are known to bind the cognate proteins SRP9/14. We purified synthetic Alu RNP, composed of Alu RNA in complex with SRP9/14, and investigated the effects of Alu RNPs and naked Alu RNA on protein translation. We found that the dimeric Alu RNP and the monomeric left and right Alu RNPs have a general dose-dependent inhibitory effect on protein translation. In the absence of SRP9/14, Alu RNA has a stimulatory effect on all reporter mRNAs. The unstable structure of sRight RNA suggests that the differential activities of Alu RNP and Alu RNA may be explained by conformational changes in the RNA. We demonstrate that Alu RNPs and Alu RNAs do not stably associate with ribosomes during translation and, based on the analysis of polysome profiles and synchronized translation, we show that Alu RNP and Alu RNA regulate translation at the level of initiation.  相似文献   

19.
45 S RNP (ribonucleoprotein) particles from calf thymus or L5178y mouse lymphoma cells contain the poly(A)-modulated and oligo(U)-binding endoribonuclease VII [Bachmann, Zahn & Müller (1983) J. Biol. Chem. 258, 7033-7040]. From these particles a 4.5 S RNA was isolated that possesses an oligo(U) sequence. By using monospecific and non-cross-reacting antibodies directed against the La or Ro antigen, both proteins were identified in the endoribonuclease VII-RNP complex after phosphorylation in vitro. In a second approach, endoribonuclease VII activity was identified in immunoaffinity-purified Ro RNPs after preparative isoelectric focusing. Therefore we conclude that the 4.5 S RNA belongs to the Ro RNAs. The results indicate a possible function of endoribonuclease VII in activating stored mRNAs.  相似文献   

20.
We have investigated the fate of the RNA components of small ribonucleoprotein particles in apoptotic cells. We show that the cytoplasmic Ro ribonucleoprotein-associated Y RNAs are specifically and rapidly degraded during apoptosis via a caspase-dependent mechanism. This is the first study describing the selective degradation of a specific class of small structural RNA molecules in apoptotic cells. Cleavage and subsequent truncation of Y RNAs was observed upon exposure of cells to a variety of apoptotic stimuli and were found to be inhibited by Bcl-2, zinc, and several caspase inhibitors. These results indicate that apoptotic degradation of Y RNAs is dependent on caspase activation, which suggests that the nucleolytic activity responsible for hY RNA degradation is activated downstream of the caspase cascade. The Y RNA degradation products remain bound by the Ro60 protein and in part also by the La protein, the only two proteins known to be stably associated with intact Ro ribonucleoprotein particles. The size of the Y RNA degradation products is consistent with the protection from degradation of the most highly conserved region of the Y RNAs by the bound Ro60 and La proteins. Our results indicate that the rapid abrogation of the yet unknown function of Y RNAs might be an early step in the systemic deactivation of the dying cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号