首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Proton motive force (pmf) is physiologically stored as either a ΔpH or a membrane potential (Δψ) across bacterial and mitochondrial energetic membranes. In the case of chloroplasts, previous work (Cruz et al. 2001, Biochemistry 40: 1226–1237) indicates that Δψ is a significant fraction of pmf, in vivo, and in vitro as long as the activities of counterions are relatively low. Kinetic analysis of light-induced changes in the electrochromic shift (ECS) in intact leaves was consistent with these observations. In this work, we took advantage of the spectroscopic properties of the green alga, Chlamydomonas reinhardtii, to demonstrate that light-driven Δψ was stored in vivo over the hours time scale. Analysis of the light-induced ECS kinetics suggested that the steady-state Δψ in 400 μmol photons m−2 s−1 red light was between 20 and 90 mV and that this represented about 60% of the light-induced increase in pmf. By extrapolation, it was surmised that about half of total (basal and light-induced) pmf is held as Δψ. It is hypothesized that Δψ is stabilized either by maintaining low chloroplast ionic strength or by active membrane ion transporters. In addition to the strong implications for regulation of photosynthesis by the xanthophyll cycle, these results imply that pmf partitioning is important across a wide range of species.  相似文献   

2.
3.
The mechanism underlying ATP-induced permeabilization of transformed mouse fibroblasts was studied by using nonhydrolyzable analogues of ATP. Incubation of 3T6 cells with 0.6 mM of either ATP, 5′-adenylyl imidodiphosphate (p[NH]ppA) or adenosine 5′-[β,γ-methylene]triphosphate (p[CH2]ppA) resulted in an increase of 17-, 8- or 5-times, respectively, in the cell membrane permeability, measured by the efflux of normally impermeant metabolites from the cells. The induced cell permeabilization was preceded by a reduction in the membrane potential (Δψ), determined according to the distribution of the cation tetraphenylphosphonium (TPP+) between the cells and the medium. Reduction of 26, 18 and 13 mV in Δψ was exerted by 0.6 mM of either ATP, p[NH]ppA or p[CH2]ppA, respectively. In 3T3 cells the untransformed counterparts of 3T6 cells, neither reduction of Δψ, nor alterations in membrane permeability were exerted by either ATP or by its analogues. The data indicate that the dissociation of the β,γ-phosphate bond is not essential for membrane permeabilization by external ATP, implying that the binding of ATP to the cell surface of transformed cells is sufficient to initiate the permeabilization process. The data also suggest that Δψ is involved in the control of membrane permeability.  相似文献   

4.
The change in cytosolic free concentration of calcium ([Ca2+]cyt) plays a key role in regulating apoptosis in animal cells. In our experiment, we tried to investigate the function of Ca2+ in programmed cell death (PCD) in tobacco (Nicotiana tobacum, cultivar BY-2) protoplasts induced by salt stress. An obvious increase in [Ca2+]cyt was observed a few minutes after treatment and the onset of a decrease in mitochondrial membrane potential (ΔΨm) was also observed before the appearance of PCD, pre-treatment of protoplasts with EGTA or LaCl3 effectively retarded the increase in [Ca2+]cyt, which was concomitant with the decrease in the percentage of cell death and higher ΔΨm, pre-treatment with cyclosporine A (CsA) also effectively retarded the increase in [Ca2+]cyt, the decrease in ΔΨm and the onset of PCD. All these results suggest that Ca2+ is a necessary element in regulating PCD and the increase in [Ca2+]cyt and the opening of mitochondrial permeability transition pore (MPTP) could promote each other in regulating PCD in tobacco protoplasts induced by salt stress.Jiusheng Lin and Yuan Wang-These authors contributed equally for this work.  相似文献   

5.
The effect of Ca2+ on energy-coupling parameters of Ehrlich ascites carcinoma was studied in digitonin-permeabilized cells. In nominally Ca-free medium the permeabilized cells respond to the addition of ADP by increased oxygen uptake with externally added respiratory substrates (succinate or pyruvate), decrease of the mitochondrial membrane potential (Δψ) and alkalinization of the medium. This typical behaviour is drastically changed if Ca2+ is added. The subsequent addition of ADP induces neither State 3 respiration, nor decrease of Δψ, nor alkalinization of the medium, indicating a complete block of ATP synthesis. These effects are produced by both a single pulse of 100 μM Ca2+ and a preincubation for 2 min with 0.4–1.0 μM Ca2+. Preincubation of the cells with glucose or deoxyglucose prior to permeabilization makes them sensitive to Ca2+ concentrations as low as 0.3 μM. In view of the previous finding that glucose and deoxyglucose produce an increase of cytoplasmic [Ca2+] in Ehrlich ascites cells [Teplova VV. Bogucka K. Czyż A. Evtodienko YuV. Duszyński J. Wojtczak L. (1993) Biochem. Biophys. Res. Commun., 196, 1148–1154; Czyż A. Teplova VV. Sabała P. Czarny M. Evtodienko YuV. Wojtczak L. (1993) Acta Biochim. Polon., 40, 539–544], the present results suggest that cytoplasmic Ca2+ plays a crucial role in the Crabtree effect.  相似文献   

6.
Uptake of [14C]sucrose by plasma membrane vesicles from leaves of tobacco (Nicotiana tabacum L.) was measured after the imposition of an inwardly directed proton gradient (ΔpH = 2) and an electrical gradient (Δψ = −68 mV, inside negative) across the vesicle membrane. The vesicles were isolated from a microsomal fraction by two-phase partitioning using media that contained 330 mM of either sorbitol or sucrose. Sucrose transport into vesicles isolated using the sorbitol-containing media showed the hallmarks of electrogenic H+ -symport, as it was highly dependent on ΔpH, could be increased three- to four-fold by Δψ, and was abolished by carbonylcyanide m-chlorophenylhydrazone (CCCP). Transport of [14C]sucrose into vesicles that were isolated using the sucrose-containing media apparently occurred by counter exchange. Its initial influx also depended on a low external pH, but it was insensitive to CCCP and hardly stimulated by Δψ. Both symport and counter exchange obeyed simple Michaelis-Menten kinetics. Transport that depends linearly on the external sucrose concentration could not be detected, indicating that the ‘linear’ component that has been observed in sucrose uptake by leaf tissues does not represent a transport route that is provided by the sucrose symporter. The potential role of H+/sucrose-symporters in phloem unloading is briefly discussed.This revised version was published online in August 2005 with a corrected cover date.  相似文献   

7.
Resveratrol, a natural polyphenolic antioxidant, has been reported to possess the cancer chemopreventive potential in wide range by means of triggering tumor cells apoptosis through various pathways. It induced apoptosis through the activation of the mitochondrial pathway in some kinds of cells. In the present reports, we showed that resveratrol-induced HepG2 cell apoptosis and mitochondrial dysfunction was dependent on the induction of the mitochondrial permeability transition (MPT), because resveratrol caused the collapse of the mitochondrial membrane potential (ΔΨm) with the concomitant release of cytochrome c (Cyt.c). In addition, resveratrol induced a rapid and sustained elevation of intracellular [Ca2+], which compromised the mitochondrial ΔΨm and triggered the process of HepG2 cell apoptosis. In permeabilized HepG2 cells, we further demonstrated that the effect of the resveratrol was indeed synergistic with that of Ca2+ and Ca2+ is necessary for resveratrol-induced MPT opening. Calcium-induced calcium release from mitochondria (mCICR) played a key role in mitochondrial dysfunction and cell apoptosis: (1) mCICR inhibitor, ruthenium red (RR), prevent MPT opening and Cyt.c release; and (2) RR attenuated resveratrol-induced HepG2 cell apoptotic death. Furthermore, resveratrol promotes MPT opening by lowering Ca2+-threshold. These data suggest modifying mCICR and Ca2+ threshold to modulate MPT opening may be a potential target to control cell apoptosis induced by resveratrol. Xuemei Tian—Foundation item: Chinese National Natural Science Foundation (No.30300455).  相似文献   

8.
Factors influencing the release and anchorage of cytochrome c to the inner membrane of brain mitochondria have been investigated. Metabolic activity of mitochondria caused a decrease in the membrane potential Δψm, accompanied by detachment of the protein from the inner membrane. In a model system of cytochrome c reconstituted in cardiolipin (CL) liposomes, phosphate was used to breach the hydrophilic lipid-protein interactions. About 44% cytochrome c was removable when heart CL (80% 18:2n-6) was employed, whereas the remaining protein accounted for the tightly bound conformation characterized by hydrophobic lipid-protein interactions. Cytochrome c release from brain CL liposomes was higher compared to heart CL, consistent with lower polyunsaturated fatty acid content. The release was even higher with CL extracted from metabolically stressed mitochondria, exhibiting more saturated fatty acid profile compared to control (30% vs.17%). Therefore, weakening of the hydrophobic interactions due to saturation of CL may account for the observed cytochrome c release from mitochondria following metabolic stress. Moreover, mitochondria enriched with polyunsaturated CL exhibited higher Δψm, compared to less unsaturated species, suggesting that CL fatty acid composition influences Δψm. Mitochondria incorporated exogenous cytochrome c without protease-sensitive factors or Δψm. The internalized protein anchored to the inner membrane without producing swelling, as monitored by forward and side light scattering, but produced Δψm consumption, suggesting recovery of respiratory activity. The Δψm decrease is ascribed to a selected mitochondrial population containing the incorporated cytochrome c.This revised version was published online in August 2005 with a corrected cover date.  相似文献   

9.
Blue native gel electrophoresis is a popular method for the determination of the oligomeric state of membrane proteins. Studies using this technique have reported that mitochondrial carriers are dimeric (composed of two ∼32-kDa monomers) and, in some cases, can form physiologically relevant associations with other proteins. Here, we have scrutinized the behavior of the yeast mitochondrial ADP/ATP carrier AAC3 in blue native gels. We find that the apparent mass of AAC3 varies in a detergent- and lipid-dependent manner (from ∼60 to ∼130 kDa) that is not related to changes in the oligomeric state of the protein, but reflects differences in the associated detergent-lipid micelle and Coomassie Blue G-250 used in this technique. Higher oligomeric state species are only observed under less favorable solubilization conditions, consistent with aggregation of the protein. Calibration with an artificial covalent AAC3 dimer indicates that the mass observed for solubilized AAC3 and other mitochondrial carriers corresponds to a monomer. Size exclusion chromatography of purified AAC3 in dodecyl maltoside under blue native gel-like conditions shows that the mass of the monomer is ∼120 kDa, but appears smaller on gels (∼60 kDa) due to the unusually high amount of bound negatively charged dye, which increases the electrophoretic mobility of the protein-detergent-dye micelle complex. Our results show that bound lipid, detergent, and Coomassie stain alter the behavior of mitochondrial carriers on gels, which is likely to be true for other small membrane proteins where the associated lipid-detergent micelle is large when compared with the mass of the protein.  相似文献   

10.
Deregulation of apoptosis seems to be a hallmark of the Fanconi anemia (FA) syndrome. In order to further define the role of the FA protein from complementation group C (FAC) in apoptosis, we characterized parameters modified during the mitomycin-C (MMC)-induced apoptotic program. It is shown that despite a higher level of cell death for FA compared to normal lymphoblasts after MMC treatment, FA cells do not display a marked DNA fragmentation. Furthermore, while playing a central role in MMC apoptosis of normal lymphoblasts, the activity of caspase-3-like proteases is altered in FA cells. Interestingly, the disruption of the mitochondrial transmembrane potential (Δψ), an early event that can lead to apoptotic or to necrotic death, is accomplished similarly in FA and in normal cells. Finally, it is shown that the overexpressed FAC protein inhibited the apoptotic steps, with the exception of the decrease of the Δψ. Altogether, our results indicate that the FAC protein acts at a step preceding the activation of the caspases and after the modification of the Δψ, a decision point at which cells can be pushed toward either apoptosis or necrosis and which, consequently, regulates the balance between the two modes of cell death.  相似文献   

11.
When loaded with high (pathological) levels of Ca2+, mitochondria become swollen and uncoupled as the result of a large non-specific increase in membrane permeability. This process, known as the mitochondrial permeability transition (MPT), is exacerbated by oxidative stress and adenine nucleotide depletion. These conditions match those that a heart experiences during reperfusion following a period of ischaemia. The MPT is caused by the opening of a non-specific pore that can be prevented by sub-micromolar concentrations of cyclosporin A (CsA). A variety of conditions that increase the sensitivity of pore opening to [Ca2+], such as thiol modification, oxidative stress, increased matrix volume and chaotropic agents, all enhance the binding of matrix cyclophilin (CyP) to the inner mitochondrial membrane in a CsA-sensitive manner. In contrast, ADP, membrane potential and low pH decrease the sensitivity of pore opening to [Ca2+] without affecting CyP binding. We present a model of pore opening involving CyP binding to a membrane target protein followed by Ca2+-dependent triggering of a conformational change to induce channel opening. Using the ischaemic/reperfused rat heart we have shown that the mitochondrial pore does not open during ischaemia, but does do so during reperfusion. Recovery of heart during reperfusion is improved in the presence of 0.2 µM CsA, suggesting that the MPT may be critical in the transition from reversible to irreversible reperfusion injury. (Mol Cell Biochem 174: 167–172, 1997)  相似文献   

12.
The reactive oxygen species (ROS)-dependent mitochondrial oscillator described in cardiac cells exhibits at least two modes of function under physiological conditions or in response to metabolic and oxidative stress. Both modes depend upon network behavior of mitochondria. Under physiological conditions cardiac mitochondria behave as a network of coupled oscillators with a broad range of frequencies. ROS weakly couples mitochondria under normal conditions but becomes a strong coupling messenger when, under oxidative stress, the mitochondrial network attains criticality. Mitochondrial criticality is achieved when a threshold of ROS is overcome and a certain density of mitochondria forms a cluster that spans the whole cell. Under these conditions, the slightest perturbation triggers a cell-wide collapse of the mitochondrial membrane potential, Δψm, visualized as a depolarization wave throughout the cell which is followed by whole cell synchronized oscillations in Δψm, NADH, ROS, and GSH. This dynamic behavior scales from the mitochondrion to the cell by driving cellular excitability and the whole heart into catastrophic arrhythmias. A network collapse of Δψm under criticality leads to: (i) energetic failure, (ii) temporal and regional alterations in action potential (AP), (iii) development of zones of impaired conduction in the myocardium, and, ultimately, (iv) a fatal ventricular arrhythmia.  相似文献   

13.
The sll1418 gene encodes a PsbP-like protein in Synechocystis sp. PCC 6803. Expression of sll1418 was similar in BG-11 and in Cl- or Ca2+-limiting media, and inactivation of sll1418 did not prevent photoautotrophic growth in normal or nutrient-limiting conditions. Also the wild-type and ΔPsbP strains exhibited similar oxygen evolution and assembly of Photosystem II (PS II) centers. Inactivation of sll1418 in the ΔPsbO: ΔPsbP, ΔPsbQ:ΔPsbP, ΔPsbU:ΔPsbP and ΔPsbV:ΔPsbP mutants did not prevent photoautotrophy or alter PS II assembly and oxygen evolution in these strains. Moreover, the absence of PsbP did not affect the ability of alkaline pH to restore photoautotrophic growth in the ΔPsbO:ΔPsbU strain. The PsbO, PsbU and PsbV proteins are required for thermostability of PS II and thermal acclimation in Synechocystis sp. PCC 6803 [Kimura et al. (2002) Plant Cell Physiol 43: 932–938]. However, thermostability and thermal acclimation in ΔPsbP cells were similar to wild type. These results are consistent with the conclusion that PsbP is associated with ∼3 of PS II centers, and may play a regulatory role in PS II [Thornton et al. (2004) Plant Cell 16: 2164–2175].  相似文献   

14.
Members of the mitochondrial carrier family interact with cardiolipin (CL) as evident from a variety of functional and structural effects. CL stabilises carrier proteins on isolation with detergents, with the Pi carrier as the prime example. CL is required for transport in reconstituted vesicles, prime examples are the Pi- and ADP/ATP carrier (AAC). CL binds to the AAC in a graded manner; 6 CL/AAC dimer bind tightly as measured on the 31P NMR time scale. 2 additional CL/dimer bind reversibly and a fast exchanging envelope of phospholipids includes CL as measured on the ESR time scale. In the crystal structure of the CAT-AAC complex 3 CL bind to the periphery of the AAC in a three-fold pseudo-symmetry. The binding of CL is implicated to contribute lowering the high transition energy barriers in the AAC. Para-functions of the AAC, as in the mitochondrial pore transition (MPT) and in cell death are linked to the CL binding of the AAC. Ca++ or oxidants can sequester or destroy AAC bound CL, rendering AAC labile, allowing pore formation and degradation. Thus AAC, by being vital for energy transfer, constitutes an Achilles heel in the eukaryotic cell. AAC together with CL is also engaged in respiratory supercomplexes. Different from AAC the similarly structured uncoupling protein (UCP1) has no tightly bound CL, but CL addition lowers affinity of the inhibitory nucleotide binding that may contribute to the physiological regulation of the uncoupling activity by ATP.  相似文献   

15.
The role of the free fatty acid (FFA) receptor and the intracellular metabolites of linoleic acid (LA) in LA-stimulated increase in cytosolic free calcium concentration ([Ca2+]i) was investigated. [Ca2+]i was measured using Fura-2 as indicator in rat pancreatic β-cells in primary culture. LA (20 µM for 2 min) stimulated a transient peak increase followed by a minor plateau increase in [Ca2+]i. Elongation of LA stimulation up to 10 min induced a strong and long-lasting elevation in [Ca2+]i. Activation of FFA receptors by the non-metabolic agonist GW9508 (40 µM for 10 min) resulted in an increase in [Ca2+]i similar to that of 2-min LA treatment. Inhibition of acyl-CoA synthetases by Triacsin C suppressed the strong and long-lasting increase in [Ca2+]i. The increase in [Ca2+]i induced by 2 min LA or GW9508 were fully eliminated by exhaustion of endoplasmic reticulum (ER) Ca2+ stores or by inhibition of phospholipase C (PLC). Removal of extracellular Ca2+ did not influence the transient peak increase in [Ca2+]i stimulated by 2 min LA or GW9508. The strong and long-lasting increase in [Ca2+]i induced by 10 min LA was only partially suppressed by extracellular Ca2+ removal or thapsigargin pretreatment, whereas remaining elevation in [Ca2+]i was eliminated after exhaustion of mitochondrial Ca2+ using triphenyltin. In conclusion, LA stimulates Ca2+ release from ER through activation of the FFA receptor coupled to PLC and mobilizes mitochondrial Ca2+ by intracellular metabolites in β-cells.  相似文献   

16.
BACKGROUND: The hydrophilic bile salt ursodeoxycholate (UDCA) inhibits injury by hydrophobic bile acids and is used to treat cholestatic liver diseases. Interestingly, hepatocyte cell death from bile acid-induced toxicity occurs more frequently from apoptosis than from necrosis. However, both processes appear to involve the mitochondrial membrane permeability transition (MPT). In this study, we determined the inhibitory effect of UDCA on deoxycholic acid (DCA)-induced MPT in isolated mitochondria by measuring changes in transmembrane potential (delta psi m) and production of reactive oxygen species (ROS). In addition, we examined the expression of apoptosis-associated proteins in mitochondria isolated from livers of bile acid-fed animals. MATERIALS AND METHODS: Adult male rats were maintained on standard diet supplemented with DCA and/or UDCA for 10 days. Mitochondria were isolated from livers by sucrose/percoll gradient centrifugation and MPT was measured using spectrophotometric and fluorimetric assays. delta psi m and ROS generation were determined by FACScan analysis. Cytoplasmic and mitochondrial protein abundance were determined by Western blot analysis. RESULTS: DCA increased mitochondrial swelling 25-fold over controls (p < 0.001); UDCA reduced the swelling by > 40% (p < 0.001). Similarly, UDCA inhibited DCA-mediated release of calcein-loaded mitochondria by 50% (p < 0.001). delta psi m was significantly decreased in mitochondria incubated with DCA but not with UDCA. delta psi m disruption was followed closely by increased superoxide anion and peroxides production (p < 0.01). Coincubation of mitochondria with UDCA significantly inhibited the changes associated with DCA (p < 0.05). In vivo, DCA feeding was associated with a 4.5-fold increase in mitochondria-associated Bax protein levels (p < 0.001); combination feeding with UDCA almost totally inhibited this increase (p < 0.001). CONCLUSION: UDCA significantly reduces DCA-induced disruption of delta psi m, ROS production, and Bax protein abundance in mitochondria, suggesting both short- and long-term mechanisms in preventing MPT. The results suggest a possible role for UDCA as a therapeutic agent in the treatment of both hepatic and nonhepatic diseases associated with high levels of apoptosis.  相似文献   

17.
Cannabis sativa is well known to produce unique secondary metabolites called cannabinoids. We recently discovered that Cannabis leaves induce cell death by secreting tetrahydrocannabinolic acid (THCA) into leaf tissues. Examinations using isolated Cannabis mitochondria demonstrated that THCA causes mitochondrial permeability transition (MPT) though opening of MPT pores, resulting in mitochondrial dysfunction (the important feature of necrosis). Although Ca2+ is known to cause opening of animal MPT pores, THCA directly opened Cannabis MPT pores in the absence of Ca2+. Based on these results, we conclude that THCA has the ability to induce necrosis though MPT in Cannabis leaves, independently of Ca2+. We confirmed that other cannabinoids (cannabidiolic acid and cannabigerolic acid) also have MPT-inducing activity similar to that of THCA. Moreover, mitochondria of plants which do not produce cannabinoids were shown to induce MPT by THCA treatment, thus suggesting that many higher plants may have systems to cause THCA-dependent necrosis.Key words: cannabinoid, Cannabis sativa, cylophilin D, mitochondrial permeability transition, necrosisCannabis sativa produces unique secondary metabolites consisting of alkylresorcinol and monoterpene groups.1 These metabolites called cannabinoids are well known to show a variety of interesting pharmacological activities including psychoactive effect and analgesic effect. Therefore, cannabinoids have attracted a great deal of attention, whereas why C. sativa produces such metabolites has long remained unclear. However, we have recently obtained evidences indicating the physiological function of THCA in Cannabis leaves.2We discovered that THCA is stored in capitate-sessile glands on Cannabis leaves and that secretion of this cannabinoid into leaf tissues causes cell death. When the properties of THCA were examined using cultured Cannabis cells, this cannabinoid induced plasmamembrane shrinkage and DNA degradation. These responses are regarded as the features of apoptotic cells, but were not suppressed by apoptosis inhibitors. In contrast, the necrosis inhibitor cyclosporine A significantly inhibited both plasmamembrane shrinkage and DNA degradation in Cannabis cells. Therefore, we assumed that THCA induces necrotic cell death in Cannabis cells and leaves.Necrosis in plants and animals is usually triggered by MPT though opening of MPT pores.3,4 MPT is known to cause mitochondrial dysfunction by mitochondrial swelling and loss of mitochondrial membrane potential (ΔΨm),5,6 and we also confirmed that THCA induces mitochondrial swelling and ΔΨm reduction in mitochondria isolated from Cannabis cells and that pretreatment with cyclosporine A inhibits both responses. Based on these evidences, we concluded that THCA has the activity to induce MPT-dependent necrosis.As described above, MPT pores play an important role in necrosis induction, whereas the mechanism of their opening in higher plants has not been fully understood. However, binding of cyclophilin D (a protein present in mitochondrial matrix) to MPT pores is shown to be essential for their opening in plants as well as animal.79 In animal mitochondria, Ca2+ mediates this binding reaction, leading to opening of MPT pores. Wheat mitochondria are also shown to undergo swelling through opening of MPT pores in response to Ca2+,9 whereas MPT pores of oats,10 Arabidopsis thaliana11 and C. sativa2 do not open by Ca2+ treatment. In contrast, THCA catalyzed opening of Cannabis MPT pores in the absence of Ca2+, suggesting that THCA directly mediates binding of cyclophilin D to MPT pores (Fig. 1). In addition, we have now confirmed that THCA causes dysfunction though MPT in mitochondria of plants (rice, soybean, A. thaliana and Scutellaria baicalensis) lacking cannabinoid-producing ability (data not shown). Therefore, many higher plants may have the systems to induce THCA-dependent necrosis.Open in a separate windowFigure 1A model depicting the opening mechanism of MPT pores in mitochondria. CYD, cyclophilin D; CN, cannabinoid.Furthermore, we investigated whether other cannabinoids and their related compounds can mediate MPT in Cannabis mitochondria. When the MPT-inducing activity of each sample was measured by monitoring both ΔΨm reduction (Fig. 2) and mitochondrial swelling (data not shown), we confirmed that cannabinoids tested here (cannabidiolic acid and cannabigerolic acid) possess the activities similar to those of THCA. On the other hand, olivetolic acid (the akylresorcinol moiety of cannabinoid) and geraniol (the monoterpene moiety of cannabigerolic acid) showed neither ΔΨm reduction nor mitochondrial swelling (Fig. 2). These results suggested that the structures (cannabinoid skeleton) where monoterpene and olivetolic acid are coupled to each other seem essential for opening of MPT pores. Therefore, we assumed that plant cyclophilin D and MPT pores have the cannabinoid-binding site.Open in a separate windowFigure 2Change of ΔΨm by treatment with various compounds (A) and their chemical structures (B). The isolated mitochondria were stained with the ΔΨm-indicating reagent (tetramethylrhodamine methylester, TMRM) and then incubated with 200 µM of each compound for 60 min. The intensity of TMRM fluorescence was measured using a fluorescence microplate reader. A decrease of the fluorescence intensity indicates ΔΨm reduction. CBDA, cannabidiolic acid; CBGA, cannabigerolic acid; OLA, olivetolic acid.Plant cell death is shown to participate in important physiological responses such as leaf senescence, somatic embryogenesis and defense against microbial pathogens.12,13 Based on its induction mechanism, plant cell death is largely classified into apoptosis and necrosis. Although the molecular mechanism of apoptosis has been extensively investigated, there is little precise information on plant necrosis. However, our study would provide important insight into necrosis-inducing mechanisms in higher plants.  相似文献   

18.
Previous studies have shown that evodiamine could trigger apoptosis in human malignant melanoma A375-S2 cells within 24 h. To further investigate the biochemical basis of this activity, the roles of reactive oxygen species (ROS) and mitochondrial permeability transition (MPT) were evaluated. Exposure to evodiamine led to a rapid increase in intracellular ROS followed by an onset of mitochondrial depolarization. ROS scavenger rescued the ΔΨm dissipation and cell death induced by evodiamine, whilst MPT inhibitor blocked the second-time ROS formation as well as cell death. Expressions of key proteins in Fas- and mitochondria-mediated pathways were furthermore examined. Both pathways were activated and regulated by ROS and MPT and were converged to a final common pathway involving the activation of caspase-3. These data suggested that a phenomenon termed ROS-induced ROS release (RIRR) was involved in evodiamine-treated A375-S2 cells and greatly contributed to the apoptotic process through both extrinsic and intrinsic pathways.  相似文献   

19.
Uncoupling protein 2: a novel player in neuroprotection   总被引:4,自引:0,他引:4  
A recent report provides exciting new evidence that suggests that uncoupling protein 2 (UCP2), a mitochondrial protein expressed in specific cells of numerous tissues, might be neuroprotective by reducing mitochondrial Ca2+ uptake and preventing mitochondrial accumulation of reactive oxygen species (ROS) following cerebral ischemia. The mitochondrial sequestration of Ca2+ and ROS, which depends on the mitochondrial membrane potential (ΔΨm), is a deleterious consequence of excitotoxicity. A neuroprotective role for Ucp2 is consistent with the already proposed property of this gene in mitigating cellular damage caused by ROS.  相似文献   

20.
PGJ2 and Δ12PGJ2 (1 μM to 30 μm) inhibited the growth of human astrocytoma cells (1321N1) in a time-dependent manner within 48 hrs, determined by [3H]thymidine incorporation into acid-insoluble fraction or amounts of protein. The EC50 values for PGJ2 and Δ12PGJ2 were approximately 8 μM and 6 μM, respectively. [3H]Thymidine incorporation to acid insoluble fraction was inhibited by these PGs within 1 hr, indicating that these PGs rapidly affect cell functions. Although it has been reported that an increase in cyclic AMP inhibits cell growth, PGJ2 and Δ12PGJ2, but not PGE1, reduced isoproterenol (10 μM)-induced accumulation of cyclic AMP, suggesting that PGJ2 and Δ12PGJ2 may disturb adenylate cyclase system, which might be independent on cell growth. On the other hand, these PGs inhibited the incorporation of [3H]inositol into phospholipid fraction within 6 hrs. Furthermore, PGJ2 and Δ12PGJ2 inhibited carbachol- and/or histamine-induced accumulation of inositol phosphates with a similar dose-dependency to their inhibitions of cell growth. In membrane preparations, however, PGJ2 and Δ12PGJ2 failed to inhibit GTPγS (10 μM)- nor Ca2+ (1mM)-induced accumulation of inositol phosphate. The site of PGJ2 or Δ12PGJ2 in inhibition of inositol phosphate accumulation would not be phospholipase C nor a putative GTP binding protein involved in activation of phospholipase C. The present results indicate that PGJ2 and Δ12PGJ2 inhibit cell growth in human astrocytoma cells and the inhibition of phosphoinositide turnover by these PGs might be involved in the inhibition of cell growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号