共查询到20条相似文献,搜索用时 0 毫秒
1.
Transposable elements (TEs) are a major source of genetic variability in genomes, creating genetic novelty and driving genome evolution. Analysis of sequenced genomes has revealed considerable diversity in TE families, copy number, and localization between different, closely related species. For instance, although the twin species Drosophila melanogaster and D. simulans share the same TE families, they display different amounts of TEs. Furthermore, previous analyses of wild type derived strains of D. simulans have revealed high polymorphism regarding TE copy number within this species. Several factors may influence the diversity and abundance of TEs in a genome, including molecular mechanisms such as epigenetic factors, which could be a source of variation in TE success. In this paper, we present the first analysis of the epigenetic status of four TE families (roo, tirant, 412 and F) in seven wild type strains of D. melanogaster and D. simulans. Our data shows intra- and inter-specific variations in the histone marks that adorn TE copies. Our results demonstrate that the chromatin state of common TEs varies among TE families, between closely related species and also between wild type strains. 相似文献
2.
Jaime Iranzo Manuel J. Gómez Francisco J. López de Saro Susanna Manrubia 《PLoS computational biology》2014,10(6)
Insertion sequences (IS) are the simplest and most abundant form of transposable DNA found in bacterial genomes. When present in multiple copies, it is thought that they can promote genomic plasticity and genetic exchange, thus being a major force of evolutionary change. The main processes that determine IS content in genomes are, though, a matter of debate. In this work, we take advantage of the large amount of genomic data currently available and study the abundance distributions of 33 IS families in 1811 bacterial chromosomes. This allows us to test simple models of IS dynamics and estimate their key parameters by means of a maximum likelihood approach. We evaluate the roles played by duplication, lateral gene transfer, deletion and purifying selection. We find that the observed IS abundances are compatible with a neutral scenario where IS proliferation is controlled by deletions instead of purifying selection. Even if there may be some cases driven by selection, neutral behavior dominates over large evolutionary scales. According to this view, IS and hosts tend to coexist in a dynamic equilibrium state for most of the time. Our approach also allows for a detection of recent IS expansions, and supports the hypothesis that rapid expansions constitute transient events—punctuations—during which the state of coexistence of IS and host becomes perturbated. 相似文献
3.
Transposable elements (TEs) are commonly thought to be of universal occurrence in eukaryotes. Analysis of complete higher eukaryotic genomes confirms the TE status as substantial genome components and provides insights into their role in shaping the genome structure of extant eukaryotes. This review addresses several recently investigated problems in transposon biology, including the potential roles of promoter organization in transposon function and evolution, the ubiquity of TEs in numerous phyla of the animal kingdom, and the possible connection between transposon content and mode of reproduction. 相似文献
4.
Deoxyribonucleic Acid Sequence Homologies Among Bacterial Insertion Sequence Elements and Genomes of Various Organisms
下载免费PDF全文

Plasmid and phage deoxyribonucleic acid (DNA) harboring bacterial insertion sequence (IS) elements IS1, IS2, and IS5 were characterized and used as probes to detect homologous sequences in various procaryotic and eucaryotic genomes. The hybridization method used permits the detection of sequences partially homologous to the elements. Hybridization of the IS-containing probes to each other revealed a region of limited homology between IS1 and IS2. Homologous sequences were then detected by computer analysis of the published IS1 and IS2 nucleotide sequences. The homologous sequence contains a tandemly repeated tetranucleotide sequence which resembles the repeated sequence at the hot spot for spontaneous mutations in the lacI gene (P. J. Farabaugh, U. Schmeissner, M. Hofer, and J. Miller, J. Mol. Biol. 126:847-863, 1978). Homology between the IS elements and various genomes was determined by hybridizing labeled DNA containing IS1, IS2, and IS5 sequences to Southern blots of chromosomal DNA cleaved with restriction endonucleases. IS1 and IS5 appear limited to the enteric bacteria, whereas IS2 sequences can also be detected in Pseudomonas putida, Pseudomonas aeruginosa, and Serratia marcescens. Bacteria which appear not to possess extrachromosomal elements, e.g., Caulobacter crescentus, did not show homology with any insertion sequences tested. In addition, sequences homologous to IS1, IS2, or IS5 were not detected in Saccharomyces cerevisiae, Dictyostelium discoideum, or calf thymus DNA. 相似文献
5.
Christian Parisod Corinne Mhiri K. Yoong Lim James J. Clarkson Mark W. Chase Andrew R. Leitch Marie-Angèle Grandbastien 《PloS one》2012,7(11)
Evidence accumulated over the last decade has shown that allopolyploid genomes may undergo drastic reorganization. However, timing and mechanisms of structural diploidization over evolutionary timescales are still poorly known. As transposable elements (TEs) represent major and labile components of plant genomes, they likely play a pivotal role in fuelling genome changes leading to long-term diploidization. Here, we exploit the 4.5 MY old allopolyploid Nicotiana section Repandae to investigate the impact of TEs on the evolutionary dynamics of genomes. Sequence-specific amplified polymorphisms (SSAP) on seven TEs with expected contrasted dynamics were used to survey genome-wide TE insertion polymorphisms. Comparisons of TE insertions in the four allopolyploid species and descendents of the diploid species most closely related to their actual progenitors revealed that the polyploids showed considerable departure from predicted additivity of the diploids. Large numbers of new SSAP bands were observed in polyploids for two TEs, but restructuring for most TE families involved substantial loss of fragments relative to the genome of the diploid representing the paternal progenitor, which could be due to changes in allopolyploids, diploid progenitor lineages or both. The majority of non-additive bands were shared by all polyploid species, suggesting that significant restructuring occurred early after the allopolyploid event that gave rise to their common ancestor. Furthermore, several gains and losses of SSAP fragments were restricted to N. repanda, suggesting a unique evolutionary trajectory. This pattern of diploidization in TE genome fractions supports the hypothesis that TEs are central to long-term genome turnover and depends on both TE and the polyploid lineage considered. 相似文献
6.
Transposable elements were first discovered in maize by BarbaraMcClintock more than 40 years ago. Today it is apparent thattransposable elements are a common component of the geneticmaterial in virtually all organisms. The best studied maizetransposable elements belong to the Activator-Dissociation andSuppressor-mutator families. They are short DNA sequences thatconsist of genes required for mobility and regulation. Boththe expression and the mobility of transposable elements areregulated in development by a mechanism that relies on the methylationof element sequences critical for expression. Elements can bestably inactivated by the same mechanism, persisting in thegenome in a cryptic form for long periods. The ability of thehost organism to regulate the highly mutagenic transposableelements may be critical to their survival, as well as theirutility as agents of genomic change. 相似文献
7.
A fundamental problem in fungal pathogenesis is to elucidate the evolutionary forces responsible for genomic rearrangements leading to races with fitter genotypes. Understanding the adaptive evolutionary mechanisms requires identification of genomic components and environmental factors reshaping the genome of fungal pathogens to adapt. Herein, Magnaporthe oryzae, a model fungal plant pathogen is used to demonstrate the impact of environmental cues on transposable elements (TE) based genome dynamics. For heat shock and copper stress exposed samples, eight TEs belonging to class I and II family were employed to obtain DNA profiles. Stress induced mutant bands showed a positive correlation with dose/duration of stress and provided evidences of TEs role in stress adaptiveness. Further, we demonstrate that genome dynamics differ for the type/family of TEs upon stress exposition and previous reports of stress induced MAGGY transposition has underestimated the role of TEs in M. oryzae. Here, we identified Pyret, MAGGY, Pot3, MINE, Mg-SINE, Grasshopper and MGLR3 as contributors of high genomic instability in M. oryzae in respective order. Sequencing of mutated bands led to the identification of LTR-retrotransposon sequences within regulatory regions of psuedogenes. DNA transposon Pot3 was identified in the coding regions of chromatin remodelling protein containing tyrosinase copper-binding and PWWP domains. LTR-retrotransposons Pyret and MAGGY are identified as key components responsible for the high genomic instability and perhaps these TEs are utilized by M. oryzae for its acclimatization to adverse environmental conditions. Our results demonstrate how common field stresses change genome dynamics of pathogen and provide perspective to explore the role of TEs in genome adaptability, signalling network and its impact on the virulence of fungal pathogens. 相似文献
8.
9.
Russian Journal of Genetics - Over the past decade, there has been an active study of the interactions between the population of transposable elements (TEs) and the rest of the genome. Many... 相似文献
10.
Fehér T Bogos B Méhi O Fekete G Csörgo B Kovács K Pósfai G Papp B Hurst LD Pál C 《Molecular biology and evolution》2012,29(10):3153-3159
Although both genotypes with elevated mutation rate (mutators) and mobilization of insertion sequence (IS) elements have substantial impact on genome diversification, their potential interactions are unknown. Moreover, the evolutionary forces driving gradual accumulation of these elements are unclear: Do these elements spread in an initially transposon-free bacterial genome as they enable rapid adaptive evolution? To address these issues, we inserted an active IS1 element into a reduced Escherichia coli genome devoid of all other mobile DNA. Evolutionary laboratory experiments revealed that IS elements increase mutational supply and occasionally generate variants with especially large phenotypic effects. However, their impact on adaptive evolution is small compared with mismatch repair mutator alleles, and hence, the latter impede the spread of IS-carrying strains. Given their ubiquity in natural populations, such mutator alleles could limit early phase of IS element evolution in a new bacterial host. More generally, our work demonstrates the existence of an evolutionary conflict between mutation-promoting mechanisms. 相似文献
11.
Background
The publicly available Laccaria bicolor genome sequence has provided a considerable genomic resource allowing systematic identification of transposable elements (TEs) in this symbiotic ectomycorrhizal fungus. Using a TE-specific annotation pipeline we have characterized and analyzed TEs in the L. bicolor S238N-H82 genome.Methodology/Principal Findings
TEs occupy 24% of the 60 Mb L. bicolor genome and represent 25,787 full-length and partial copy elements distributed within 171 families. The most abundant elements were the Copia-like. TEs are not randomly distributed across the genome, but are tightly nested or clustered. The majority of TEs exhibits signs of ancient transposition except some intact copies of terminal inverted repeats (TIRS), long terminal repeats (LTRs) and a large retrotransposon derivative (LARD) element. There were three main periods of TE expansion in L. bicolor: the first from 57 to 10 Mya, the second from 5 to 1 Mya and the most recent from 0.5 Mya ago until now. LTR retrotransposons are closely related to retrotransposons found in another basidiomycete, Coprinopsis cinerea.Conclusions
This analysis 1) represents an initial characterization of TEs in the L. bicolor genome, 2) contributes to improve genome annotation and a greater understanding of the role TEs played in genome organization and evolution and 3) provides a valuable resource for future research on the genome evolution within the Laccaria genus. 相似文献12.
13.
A simple methematical model describes the invasion of panmictic, sexually reproducing populations by a newly introduced transposon. The model places important constraints on the properties that transposons must have to successfully invade a population and describes the kinetics with which such an invasion will occur. Invasibility conditions serve as a basis for new, detailed scenarios whereby transposon-mediated depression in fitness produces reproductive isolation of populations. These scenarios, in turn, lead to several speculations concerning the role of transposons in evolution. 相似文献
14.
We have compared the organization of six Tgm elements that were selected from a genomic library of soybean DNA on the basis of hybridization with subcloned regions of Tgm 1 (transposon, Glycine max) from the seed lectin gene. These elements ranged in size from 1.6 kbp to greater than 12 kbp. Tgm2, Tgm3, Tgm4 and Tgm5 represent partial isolates in which the genomic clone contained a 3' but not a 5' terminus of the element; while Tgm6 and Tgm7, like Tgm1, were small isolates flanked by both 5' and 3' nonelement sequences. Cross-hybridization studies between subcloned portions of these seven elements identified regions of homology which suggest that the Tgm transposable elements of soybean form a family of deletion derivatives. In addition to internal deletion events, numerous deletions and base substitutions are also present within the borders of these elements which are comprised of the same tandemly repeated sequence. The 39% amino acid homology between a 1 kb portion of an open reading frame in Tgm4 and Tgm5 and ORF1, an open frame from the first intron of the maize Enhancer (Suppressor-mutator) transposable element, suggests that both elements encode a common function that requires a high degree of protein conservation. 相似文献
15.
The purpose of this research was to search for evolutionarily conserved fungal sequences to test the hypothesis that fungi have a set of core genes that are not found in other organisms, as these genes may indicate what makes fungi different from other organisms. By comparing 6355 predicted or known yeast (Saccharomyces cerevisiae) genes to the genomes of 13 other fungi using Standalone TBLASTN at an e-value <1E-5, a list of 3340 yeast genes was obtained with homologs present in at least 12 of 14 fungal genomes. By comparing these common fungal genes to complete genomes of animals (Fugu rubripes, Caenorhabditis elegans), plants (Arabidopsis thaliana, Oryza sativa), and bacteria (Agrobacterium tumefaciens, Xylella fastidiosa), a list of common fungal genes with homologs in these plants, animals, and bacteria was produced (938 genes), as well as a list of exclusively fungal genes without homologs in these other genomes (60 genes). To ensure that the 60 genes were exclusively fungal, these were compared using TBLASTN to the major sequence databases at GenBank: NR (nonredundant), EST (expressed sequence tags), GSS (genome survey sequences), and HTGS (unfinished high-throughput genome sequences). This resulted in 17 yeast genes with homologs in other fungal genomes, but without known homologs in other organisms. These 17 core, fungal genes were not found to differ from other yeast genes in GC content or codon usage patterns. More intensive study is required of these 17 genes and other common fungal genes to discover unique features of fungi compared to other organisms.Reviewing Editor: Prof. David Gottman 相似文献
16.
《Seminars in Virology》1997,8(3):194-204
The RNA genomes of simple retroviruses encode three genes (gag, pol,andenv) which are required for replication. In addition, there are at least three well-definedcis-acting structures which regulate important aspects of the viral life cycle. The packaging signal at the 5′ end of the RNA tags the genomic RNA for specific encapsidation into assembling virus. Since viral Env proteins are translated from spliced mRNAs,cis-acting splicing signals ensure that the proper ratio of spliced and unspliced viral RNAs is present in the infected cell. Finally,cis-acting elements at the 3′ end of the genome promote the export of unspliced RNAs from the nucleus for translation and encapsidation. 相似文献
17.
18.
Systems initially emerged for protecting genomes against insertions of transposable elements and represented by mechanisms of splicing regulation, RNA–interference, and epigenetic factors have played a key role in the evolution of animals. Many studies have shown inherited transpositions of mobile elements in embryogenesis and preservation of their activities in certain tissues of adult organisms. It was supposed that on the emergence of Metazoa the self–regulation mechanisms of transposons related with the gene networks controlling their activity could be involved in intercellular cell coordination in the cascade of successive divisions with differentiated gene expression for generation of tissues and organs. It was supposed that during evolution species–specific features of transposons in the genomes of eukaryotes could form the basis for creation of dynamically related complexes of systems for epigenetic regulation of gene expression. These complexes could be produced due to the influence of noncoding transposon–derived RNAs on DNA methylation, histone modifications, and processing of alternative splicing variants, whereas the mobile elements themselves could be directly involved in the regulation of gene expression in cis and in trans. Transposons are widely distributed in the genomes of eukaryotes; therefore, their activation can change the expression of specific genes. In turn, this can play an important role in cell differentiation during ontogenesis. It is supposed that transposons can form a species–specific pattern for control of gene expression, and that some variants of this pattern can be favorable for adaptation. The presented data indicate the possible influence of transposons in karyotype formation. It is supposed that transposon localization relative to one another and to protein–coding genes can influence the species–specific epigenetic regulation of ontogenesis. 相似文献
19.
We have performed a phylogenetic analysis of 59 mariner elements in 14 Drosophilidae species that are related to the active Drosophila mauritiana Mos1 element. This includes 38 previously described sequences and 21 new sequences amplified by PCR from 10 species. Most of the
elements detected are nonfunctional due to several frameshifts and deletions. They have been subdivided into four groups according
to specific signatures in the nucleotidic and amino acid sequences. The mean nucleotide diversity is 4.8 ± 0.1% and reflects
mainly the divergence of inactive elements over different periods. Although this probably gives rise to occasional homoplasies
between distantly related taxa, the elements of each species remain grouped together. Horizontal transfer, reported previously
between D. mauritiana and Zaprionus tuberculatus, can be extended to Z. verruca, while the Mos1-like element of Z. indianus belongs to another group. Interpretation of the phylogeny leads to a comparison of the influence of common ancestral sequences
and putative horizontal transfers.
Received: 31 May 1999 / Accepted: 28 June 1999 相似文献