首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of the study was to evaluate the influence of selected physiological parameters on amplitude cancellation in the simulated surface electromyogram (EMG) and the consequences for spike-triggered averages of motor unit potentials derived from the interference and rectified EMG signals. The surface EMG was simulated from prescribed recruitment and rate coding characteristics of a motor unit population. The potentials of the motor units were detected on the skin over a hand muscle with a bipolar electrode configuration. Averages derived from the EMG signal were generated using the discharge times for each of the 24 motor units with lowest recruitment thresholds from a population of 120 across three conditions: 1) excitation level; 2) motor unit conduction velocity; and 3) motor unit synchronization. The area of the surface-detected potential was compared with potentials averaged from the interference, rectified, and no-cancellation EMGs. The no-cancellation EMG comprised motor unit potentials that were rectified before they were summed, thereby preventing cancellation between the opposite phases of the potentials. The percent decrease in area of potentials extracted from the rectified EMG was linearly related to the amount of amplitude cancellation in the interference EMG signal, with the amount of cancellation influenced by variation in excitation level and motor unit conduction velocity. Motor unit synchronization increased potentials derived from both the rectified and interference EMG signals, although cancellation limited the increase in area for both potentials. These findings document the influence of amplitude cancellation on motor unit potentials averaged from the surface EMG and the consequences for using the procedure to characterize motor unit properties.  相似文献   

2.
The amplitude of the surface EMG does not reach the level achieved during a maximal voluntary contraction force at the end of a sustained, submaximal contraction, despite near-maximal levels of voluntary effort. The depression of EMG amplitude may be explained by several neural and muscular adjustments during fatiguing contractions, including decreased net neural drive to the muscle, changes in the shape of the motor unit action potentials, and EMG amplitude cancellation. The changes in these parameters for the entire motor unit pool, however, cannot be measured experimentally. The present study used a computational model to simulate the adjustments during sustained isometric contractions and thereby determine the relative importance of these factors in explaining the submaximal levels of EMG amplitude at task failure. The simulation results indicated that the amount of amplitude cancellation in the simulated EMG (~ 40%) exhibited a negligible change during the fatiguing contractions. Instead, the main determinant of the submaximal EMG amplitude at task failure was a decrease in muscle activation (number of muscle fiber action potentials), due to a reduction in the net synaptic input to motor neurons, with a lesser contribution from changes in the shape of the motor unit action potentials. Despite the association between the submaximal EMG amplitude and reduced muscle activation, the deficit in EMG amplitude at task failure was not consistently associated with the decrease in neural drive (number of motor unit action potentials) to the muscle. This indicates that the EMG amplitude cannot be used as an index of neural drive.  相似文献   

3.
The purpose of the study was to quantify the influence of amplitude cancellation on the accuracy of detecting the onset of muscle activity based on an analysis of simulated surface electromyographic (EMG) signals. EMG activity of a generic lower limb muscle was simulated during the stance phase of human gait. Surface EMG signals were generated with and without amplitude cancellation by summing simulated motor unit potentials either before (cancellation EMG) or after (no-cancellation EMG) the potentials had been rectified. The two sets of EMG signals were compared at forces of 30% and 80% of maximum voluntary contraction (MVC) and with various low-pass filter cut-off frequencies. Onset time was determined both visually and by an algorithm that identified when the mean amplitude of the signal within a sliding window exceeded a specified standard deviation (SD) above the baseline mean. Onset error was greater for the no-cancellation conditions when determined automatically and by visual inspection. However, the differences in onset error between the two cancellation conditions appear to be clinically insignificant. Therefore, amplitude cancellation does not appear to limit the ability to detect the onset of muscle activity from the surface EMG.  相似文献   

4.
Insight into the magnitude of muscle forces is important in biomechanics research, for example because muscle forces are the main determinants of joint loading. Unfortunately muscle forces cannot be calculated directly and can only be measured using invasive procedures. Therefore, estimates of muscle force based on surface EMG measurements are frequently used. This review discusses the problems associated with surface EMG in muscle force estimation and the solutions that novel methodological developments provide to this problem. First, some basic aspects of muscle activity and EMG are reviewed and related to EMG amplitude estimation. The main methodological issues in EMG amplitude estimation are precision and representativeness. Lack of precision arises directly from the stochastic nature of the EMG signal as the summation of a series of randomly occurring polyphasic motor unit potentials and the resulting random constructive and destructive (phase cancellation) superimpositions. Representativeness is an issue due the structural and functional heterogeneity of muscles. Novel methods, i.e. multi-channel monopolar EMG and high-pass filtering or whitening of conventional bipolar EMG allow substantially less variable estimates of the EMG amplitude and yield better estimates of muscle force by (1) reducing effects of phase cancellation, and (2) adequate representation of the heterogeneous activity of motor units within a muscle. With such methods, highly accurate predictions of force, even of the minute force fluctuations that occur during an isometric and isotonic contraction have been achieved. For dynamic contractions, EMG-based force estimates are confounded by the effects of muscle length and contraction velocity on force producing capacity. These contractions require EMG amplitude estimates to be combined with modeling of muscle contraction dynamics to achieve valid force predictions.  相似文献   

5.
A model of the motor unit action potential was developed to investigate the amplitude and frequency spectrum contributions of motor units, located at various depths within muscle, to the surface detected electromyographic (EMG) signal. A dipole representation of the transmembrane current in a three-dimensional muscle volume was used to estimate detected individual muscle fiber action potentials. The effects of anisotropic muscle conductance, innervation zone location, propagation velocity, fiber length, electrode area, and electrode configuration were included in the fiber action potential model. A motor unit action potential was assumed to be the sum of the individual muscle fiber action potentials. A computational procedure, based on the notion of isopotential layers, was developed which substantially reduced the calculation time required to estimate motor unit action potentials. The simulations indicated that: 1) only those motor units with muscle fibers located within 10–12 mm of the electrodes would contribute significant signal energy to the surface EMG, 2) variation in surface area of electrodes has little effect on the detection depth of motor unit action potentials, 3) increased interelectrode spacing moderately increases detection depth, and 4) the frequency content of action potentials decreases steeply with increased electrode-motor unit territory distance.  相似文献   

6.
The purpose of this study was to examine the effects of interelectrode distance (IED) on the absolute and normalized electromyographic (EMG) amplitude and mean power frequency (MPF) versus isokinetic and isometric torque relationships for the biceps brachii muscle. Ten adults [mean+/-SD age=22.0+/-3.4 years] performed submaximal to maximal, isokinetic and isometric muscle actions of the dominant forearm flexors. Following determination of isokinetic peak torque (PT) and the isometric maximum voluntary contraction (MVC), the subjects performed randomly ordered, submaximal step muscle actions in 10% increments from 10% to 90% PT and MVC. Surface EMG signals were recorded simultaneously from bipolar electrode arrangements placed over the biceps brachii muscle with IEDs of 20, 40, and 60mm. Absolute and normalized EMG amplitude (muVrms and %max) increased linearly with torque during the isokinetic and isometric muscle actions (r(2) range=0.988-0.998), but there were no significant changes for absolute or normalized EMG MPF (Hz or %max) from 10% to 100% PT and MVC. In some cases, there were significant (p<0.05) differences among the three IED arrangements for absolute EMG amplitude and MPF values, but not for the normalized values. These findings suggested that for the biceps brachii muscle, IEDs between 20 and 60mm resulted in similar patterns for the EMG amplitude or MPF versus dynamic and isometric torque relationships. Furthermore, unlike the absolute EMG amplitude and MPF values, the normalized EMG data were not influenced by changes in IED between 20 and 60mm. Thus, normalized EMG data can be compared among previous studies that have utilized different IED arrangements.  相似文献   

7.
The aim of the study was to investigate amplitude and frequency content of single motor unit (MU) electromyographic (EMG) and mechanomyographic (MMG) responses. Multi-channel surface EMG and MMG signals were detected from the dominant biceps brachii muscle of 10 volunteers during isometric voluntary contractions at 20%, 50%, and 80% of the maximal voluntary contraction (MVC) force. Each contraction was performed three times in the experimental session which was repeated in three non-consecutive days. Single MU action potentials were identified from the surface EMG signals and their times of occurrence used to trigger the averaging of the MMG signal. At each contraction level, the MUs with action potentials of highest amplitude were identified. Single MU EMG and MMG amplitude and mean frequency were estimated with normalized standard error of the mean within subjects (due to repetition of the measure in different trials and experimental sessions) smaller than 15% and 7%, respectively, in all conditions. The amplitude of the action potentials of the detected MUs increased with increasing force (mean +/- SD, 244 +/- 116 microV at 20% MVC, and 1426 +/- 638 microV at 80% MVC; P < 0.001) while MU MMG amplitude increased from 20% to 50% MVC (40.5 +/- 20.9 and 150 +/- 88.4 mm/s(2), respectively; P<0.001) and did not change significantly between 50% and 80% MVC (129 +/ -82.7 mm/s(2) at 80% MVC). MU EMG mean frequency decreased with contraction level (20% MVC: 97.2 +/- 13.9 Hz; 80% MVC: 86.2 +/- 11.4 Hz; P < 0.001) while MU MMG mean frequency increased (20% MVC: 33.2 +/- 6.8 Hz; 80% MVC: 40.1 +/- 6.1 Hz; P < 0.001). EMG peak-to-peak amplitude and mean frequency of individual MUs were not correlated with the corresponding variables of MMG at any contraction level.  相似文献   

8.
Single motor unit and fiber action potentials during fatigue   总被引:3,自引:0,他引:3  
Muscle fatigue is defined as a loss of tension development during constant stimulation. Although the relationship is not well documented, muscle fatigue has been inferred from electromyogram (EMG) signals. The purpose of this study was to determine the relationship between the amplitude and duration of single motor unit action potentials (MUAPs) and the loss of tension development (fatigue) in the medial gastrocnemius muscles of cats. Single motor units were fatigued by continuous stimulation at 10 or 80 Hz or with trains of 40-Hz stimuli. When motor units were stimulated at 10 Hz and with trains at 40 Hz (low frequency), tension declined and remained depressed during recovery. The changes in the MUAP correlated poorly with changes in tension. During and after stimulation at 80 Hz (high frequency), changes in the amplitude and duration of MUAPs correlated highly with changes in tension development. Since the EMG signal is dependent on a summation and cancellation of individual MUAPs, the EMG provides a reasonable estimate of high-frequency fatigue but an unreliable measure of low-frequency fatigue.  相似文献   

9.
The purposes of this investigation were to examine the effects of electrode placement and innervation zone (IZ) location on: (a) the torque-related patterns of responses for absolute and normalized electromyographic (EMG) amplitude and mean power frequency (MPF) and (b) the mean absolute and normalized EMG amplitude and MPF values. In addition, the present study examined the variability between subjects for the location of the IZ for the vastus lateralis (VL). Eight men (mean+/-SD age=23.0+/-4.3yr) performed submaximal to maximal isometric muscle actions of the dominant leg extensors. During each muscle action, fifteen channels of bipolar surface EMG signals were detected from the vastus lateralis using a linear electrode array aligned with the long axis of the muscle fibers. The results indicated that there were differences among channels 1-15 for the patterns of responses and mean values for absolute and normalized EMG amplitude and MPF versus isometric torque. Thus, normalized EMG amplitude and MPF values from different individuals cannot be compared if the EMG signals were detected from different locations over the muscle. In addition, absolute and relative (to femur length) estimates of IZ location for the VL resulted in similar inter-subject variability.  相似文献   

10.
Intramuscular and surface electromyogram changes during muscle fatigue   总被引:9,自引:0,他引:9  
Twelve male subjects were tested to determine the effects of motor unit (MU) recruitment and firing frequency on the surface electromyogram (EMG) frequency power spectra during sustained maximal voluntary contraction (MVC) and 50% MVC of the biceps brachii muscle. Both the intramuscular MU spikes and surface EMG were recorded simultaneously and analyzed by means of a computer-aided intramuscular spike amplitude-frequency histogram and frequency power spectral analysis, respectively. Results indicated that both mean power frequency (MPF) and amplitude (rmsEMG) of the surface EMG fell significantly (P less than 0.001) together with a progressive reduction in MU spike amplitude and firing frequency during sustained MVC. During 50% MVC there was a significant decline in MPF (P less than 0.001), but this decline was accompanied by a significant increase in rmsEMG (P less than 0.001) and a progressive MU recruitment as evidenced by an increased number of MUs with relatively large spike amplitude. Our data suggest that the surface EMG amplitude could better represent the underlying MU activity during muscle fatigue and the frequency powers spectral shift may or may not reflect changes in MU recruitment and rate-coding patterns.  相似文献   

11.
The extraction of neural strategies from the surface EMG.   总被引:14,自引:0,他引:14  
This brief review examines some of the methods used to infer central control strategies from surface electromyogram (EMG) recordings. Among the many uses of the surface EMG in studying the neural control of movement, the review critically evaluates only some of the applications. The focus is on the relations between global features of the surface EMG and the underlying physiological processes. Because direct measurements of motor unit activation are not available and many factors can influence the signal, these relations are frequently misinterpreted. These errors are compounded by the counterintuitive effects that some system parameters can have on the EMG signal. The phenomenon of crosstalk is used as an example of these problems. The review describes the limitations of techniques used to infer the level of muscle activation, the type of motor unit recruited, the upper limit of motor unit recruitment, the average discharge rate, and the degree of synchronization between motor units. Although the global surface EMG is a useful measure of muscle activation and assessment, there are limits to the information that can be extracted from this signal.  相似文献   

12.
High-density surface EMG can be used to obtain a spatially selective representation of several motor unit action potentials. Recently, a decomposition of the signal into the underlying motor neuron firing patterns has been described. The reliability of the algorithm has not yet been tested. Eleven healthy subjects participated. High-density surface EMG was recorded from the vastus lateralis muscle during an isometric knee extension. Two independent operators analyzed the signals. After operator-supervised cluster analysis of spikes, motor unit action potential templates were constructed and an automatic template matching was performed. The decomposition was adjusted by hand. Agreement between operators was calculated for the number of coincident firings. Bland-Altman plots of peak-to-peak amplitude were constructed and limits of agreement were calculated. For completely decomposed motor unit action potential trains the between-operator agreement of firing events was very high. The peak-to-peak amplitude of monopolar motor unit action potentials was 115microV (SD 74microV). The agreement was within 3microV and independent of amplitude. With partial decomposition agreement within 26microV was achieved. For bipolarly derived motor unit action potentials the peak-to-peak amplitude was 54microV (SD 49microV), the agreement was within 3microV. Only for recordings obtained from a force level below 5% of the maximum voluntary contraction full decomposition was possible. It was concluded that when full decomposition is achieved, two independent operators are likely to arrive at nearly identical firing patterns.  相似文献   

13.
Firing rates of motor units and surface EMG were measured from the triceps brachii muscles of able-bodied subjects during brief submaximal and maximal isometric voluntary contractions made at 5 elbow joint angles that covered the entire physiological range of muscle lengths. Muscle activation at the longest, midlength, and shortest muscle lengths, measured by twitch occlusion, averaged 98%, 97%, and 93% respectively, with each subject able to achieve complete activation during some contractions. As expected, the strongest contractions were recorded at 90 degrees of elbow flexion. Mean motor unit firing rates and surface EMG increased with contraction intensity at each muscle length. For any given absolute contraction intensity, motor unit firing rates varied when muscle length was changed. However, mean motor unit firing rates were independent of muscle length when contractions were compared with the intensity of the maximal voluntary contraction (MVC) achieved at each joint angle.  相似文献   

14.
The purpose of this study was to examine the influence of interelectrode distance (IED) over the estimated innervation zone (IZ) for the vastus lateralis muscle and normalization on the torque-related patterns of responses for electromyographic (EMG) amplitude and mean power frequency (MPF) during concentric isokinetic, eccentric isokinetic, and isometric muscle actions of the leg extensors. Eight men performed submaximal to maximal concentric isokinetic, eccentric isokinetic, and isometric muscle actions of the dominant leg extensors. Surface EMG signals were recorded simultaneously with two bipolar electrode arrangements in single differential configuration (20 and 40 mm IEDs) placed over the estimated IZ for the vastus lateralis muscle and a third electrode arrangement in single differential configuration (20 mm IED) placed distal to the estimated IZ. The results indicated that there were only a few (six of 90 statistical comparisons) significant (p < 0.05) mean differences among the three electrode arrangements for absolute EMG amplitude. There were no mean differences among the three electrode arrangements for absolute or normalized EMG MPF values or normalized EMG amplitude for the three types of muscle actions. Thus, it may be possible to reduce the potential influence of the IZ on amplitude and spectral parameters of the EMG signal through normalization.  相似文献   

15.
In comparison to isometric muscle action models, little is known about the electromyographic (EMG) and mechanomyographic (MMG) amplitude and mean power frequency (MPF) responses to fatiguing dynamic muscle actions. Simultaneous examination of the EMG and MMG amplitude and MPF may provide additional insight with regard to the motor control strategies utilized by the superficial muscles of the quadriceps femoris during a concentric fatiguing task. Thus, the purpose of this study was to examine the EMG and MMG amplitude and MPF responses of the vastus lateralis (VL), rectus femoris (RF), and vastus medialis (VM) during repeated, concentric muscle actions of the dominant leg. Seventeen adults (21.8+/-1.7 yr) performed 50 consecutive, maximal concentric muscle actions of the dominant leg extensors on a Biodex System 3 Dynamometer at velocities of 60 degrees s(-1) and 300 degrees s(-1). Bipolar surface electrode arrangements were placed over the mid portion of the VL, RF, and VM muscles with a MMG contact sensor placed adjacent to the superior EMG electrode on each muscle. Torque, MMG and EMG amplitude and MPF values were calculated for each of the 50 repetitions. All values were normalized to the value recorded during the first repetition and then averaged across all subjects. The cubic decreases in torque at 60 degrees s(-1) (R2 = 0.972) and 300 degrees s(-1) (R2 = 0.931) was associated with a decline in torque of 59+/-24% and 53+/-11%, respectively. The muscle and velocity specific responses for the MMG amplitude and MPF demonstrated that each of the superficial muscles of the quadriceps femoris uniquely contributed to the control of force output across the 50 repetitions. These results suggested that the MMG responses for the VL, RF, VM during a fatiguing task may be influenced by a number of factors such as fiber type differences, alterations in activation strategy including motor unit recruitment and firing rate and possibly muscle wisdom.  相似文献   

16.
Motor unit synchronization was estimated from the surface electromyograms (EMG) of the first dorsal interosseus muscle of human volunteers by a simplified surface-EMG technique (Milner-Brown et al. 1973, 1975). Single motor units were identified from intramuscular recordings and were used to obtain a spike-triggered average of the surface-EMG. The discharge rate of a reference motor unit was controlled at two levels (high and low), and the effect of motor unit activity on the surface-EMG estimate of synchronization was studied in 56 motor units. The surface-EMG estimate of motor unit synchronization was significantly higher when the reference motor unit discharged at the high rate than when it discharged at the low rate. A regression analysis indicated that the synchronization ratio calculated from the surface EMG was significantly correlated with the level of EMG activity in the muscle. Motor unit synchronization was also estimated from surface-EMG measurements that were derived by computer simulation. The simulation permitted manipulation of motor unit activity (discharge rate and recruitment) with a complete absence of synchrony among the units in the pool. The stimulated surface-EMG index was influenced by an artifact associated with signal rectification, and this effect changed non-monotonically with motor unit activity. Furthermore, the increase in the motor unit activity reduced the signal-to-noise ratio of the spike-triggered surface EMG average, and consequently decreased the sensitivity of the surface-EMG index as an estimate of motor unit synchronization. We conclude that the simplified surface-EMG method (Milner-Brown et al. 1973, 1975) does not provide a useful index of motor unit synchronization due to its inability to accurately distinguish the synchronization from methodological effects related to a rectification artifact and variation in the signal-to-noise ratio.  相似文献   

17.
The alpha motoneuron pool and the surface electromyogram (EMG) of the human soleus muscle are modelled, respectively, by an alpha motoneuron pool model generating the firing patterns in the motor units of e muscle and by a muscle model using these discharge patterns to simulate the surface EMG. In the alpha motoneuron pool model, we use a population of motoneurons in which cellular properties like cell size and membrane conductance are distributed according to experimentally observed data. By calculating the contribution from each motor unit, the muscle model predicts the EMG. Wave forms of the motor unit action potentials in the surface EMG are obtained from experimental data. Using the model, we are able to give a quantitative prediction of the motoneuron pool activity and the reflex EMG output at different preactivation levels. The simulated data are consistent with experimentally obtained results in healthy humans. During static isometric muscle preactivations, the simulations show that the reflex strength is highly dependent on the intrinsic threshold properties of the alpha motoneuron pool. Received: 27 April 1993/Accepted in revised form: 8 September 1993  相似文献   

18.
The relative roles of motor unit firing rate modulation and recruitment were evaluated when individuals with cervical spinal cord injury (SCI) and able-bodied controls performed a brief (6 s), 50% maximal voluntary contraction (50% MVC; target contraction) of triceps brachii every 10 s until it required maximal effort to achieve the target force. Mean (+/-SD) endurance times for SCI and control subjects were 34+/-26 and 15+/-5 min, respectively, at which point significant reductions in maximal triceps force had occurred. Twitch occlusion analysis in controls indicated that force declines resulted largely from peripheral contractile failure. In SCI subjects, triceps surface EMG and motor unit potential amplitude declined in parallel suggesting failure at axon branch points and/or alterations in muscle membrane properties. The force of low threshold units, measured by spike-triggered averaging, declined in SCI but not control subjects, suggesting that higher threshold units fatigued in controls. Central fatigue was also obvious after SCI. Mean (+/-SD) MVC motor unit firing rates declined significantly with fatigue for control (24.6+/-7.1 to 17.3+/-5.1Hz), but not SCI subjects (25.9+/-12.7 to 20.1+/-9.7Hz). Unit firing rates were unchanged during target contractions for each subject group, but with the MVC rate decreases, units of SCI and control subjects were activated intensely at endurance time (88% and 99% MVC rates, respectively). New unit recruitment also maintained the target contractions although it was limited after SCI because many descending inputs to triceps motoneurons were disrupted. This resulted in sparse EMG, even during MVCs, but allowed the same unit to be recorded throughout. These EMG data showed that both unit recruitment and rate modulation were important for maintaining force during repeated submaximal intermittent contractions of triceps brachii muscles performed by SCI subjects. Similar results were found for control subjects. Muscles weakened by SCI may therefore provide a useful model in which to directly study motor unit rate modulation and recruitment during weak or strong voluntary contractions.  相似文献   

19.
Muscular sound and force relationship during isometric contraction in man   总被引:3,自引:0,他引:3  
The contracting muscle generates a low frequency sound detectable at the belly surface, ranging from 11 to 40 Hz. To study the relationship between the muscular sound and the intensity of the contraction a sound myogram (SMG) was recorded by a contact sensor from the biceps brachii of seven young healthy males performing 4-s isometric contractions from 10% to 100% of the maximal voluntary contraction (MVC), in 10% steps. Simultaneously, the electromyogram (EMG) was recorded as an index of muscle activity. SMG and EMG were integrated by conventional methods (iSMG and iEMG). The relationship between iSMG and iEMG vs MVC% is described by parabolic functions up to 80% and 100% MVC respectively. Beyond 80% MVC the iSMG decreases, being about half of its maximal value at 100% MVC. Our results indicate that the motor unit recruitment and firing rate affect the iSMG and iEMG in the same way up to 80% MVC. From 80% to 100% MVC the high motor units' discharge rate and the muscular stiffness together limit the pressure waves generated by the dimensional changes of the active fibres. The muscular sound seems to reflect the intramuscular visco-elastic characteristics and the motor unit activation pattern of a contracting muscle.  相似文献   

20.
The normalization of EMG signals to those recorded during a maximal voluntary contraction provides a valid construct for comparisons of relative muscle activity. However, the length dependence of muscle activation and purported, substantial, muscle translocation and changes in muscle architecture during dynamic movements presents a need for joint angle-dependent normalization processes. The purposes of the present study were to: (1) quantify variations in muscle activity across a large ROM, (2) determine the accuracy with which fitted EMG-joint angle curves accurately characterized these variations, and (3) compare peak (EMG-P) and average (EMG-A) EMG amplitudes obtained during a countermovement leg extension when normalized to both absolute peak and joint angle-specific muscle activity. Fifteen subjects performed a large ROM (110°) isokinetic (30° s?1) leg extension from which EMG-joint angle relationships were derived using polynomial fitting of different complexities. Ten subjects also performed loaded countermovement leg extensions from which EMG signals were normalized using peak muscle activity and EMG-angle curves. EMG amplitude varied significantly over the ROM and the use of EMG-angle curves for signal normalization resulted in significantly greater EMG-P and EMG-A than those normalized using the absolute peak EMG. Higher-order polynomial fitting better matched the filtered EMG amplitudes. Thus, there is a strong rationale for using EMG-angle polynomial fits to normalize EMG signals for large ROM movements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号