首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In previous studies, we have shown that cerebral hypoxia results in increased activity of caspase-9, the initiator caspase, and caspase-3, the executioner of programmed cell death. We have also shown that cerebral hypoxia results in high affinity Ca2+–ATPase-dependent increase in nuclear Ca2+-influx in the cerebral cortex of newborn piglets. The present study tests the hypothesis that inhibiting nuclear Ca2+-influx by pretreatment with clonidine, an inhibitor of high affinity Ca2+–ATPase, will prevent the hypoxia-induced increase in caspase-9 and caspase-3 activity in the cerebral cortex of newborn piglets. Thirteen newborn piglets were divided into three groups, normoxic (Nx, n = 4), hypoxic (Hx, n = 4), and hypoxic treated with clonidine (100 mg/kg) (Hx–Cl, n = 5). Anesthetized, ventilated animals were exposed to an FiO2 of 0.21 (Nx) or 0.07 (Hx) for 60 min. Cerebral tissue hypoxia was documented biochemically by determining levels of ATP and phosphocreatine (PCr). Caspase-9 and -3 activity were determined spectrofluoro-metrically using specific fluorogenic synthetic substrates. ATP (μmoles/g brain) was 4.6 ± 0.3 in Nx, 1.7±0.4 in Hx (P < 0.05 vs. Nx), and 1.5 ± 0.2 in Hx–Cl (P < 0.05 vs. Nx). PCr (μmoles/g brain) was 3.6 ± 0.4 in Nx, 1.1 ± 0.3 in Hx (P < 0.05 vs. Nx), and 1.0 ± 0.2 in Hx–Cl (P < 0.05 vs. Nx). Caspase-9 activity (nmoles/mg protein/h) was 0.548 ± 0.0642 in Nx and increased to 0.808 ± 0.080 (P < 0.05 vs. Nx and Hx–Cl) in the Hx and 0.562 ± 0.050 in the Hx–Cl group (p = NS vs. Nx). Caspase-3 activity (nmoles/mg protein/h) was 22.0 ± 1.3 in Nx and 32 ± 6.3 in Hx (P < 0.05 vs. Nx) and 18.8 ± 3.2 in the Hx–Cl group (P < 0.05 vs. Hx). The data demonstrate that clonidine administration prior to hypoxia prevents the hypoxia-induced increase in the activity of caspase-9 and caspase-3. We conclude that the high afinity Ca2+–ATPase-dependent increased nuclear Ca2+ during hypoxia results in increased caspase-9 and caspase-3 activity.  相似文献   

3.
The present study aims to investigate the mechanism of phosphorylation of apoptotic proteins and tests the hypothesis that the hypoxia-induced increased tyrosine phosphorylation of apoptotic proteins Bcl-2 and Bcl-xl is Ca2+-influx-dependent. Piglets were divided in normoxic (Nx, n = 5), hypoxic (Hx, n = 5) and hypoxic-pretreated with clonidine (Clo + Hx, n = 4) groups. Hypoxic animals were exposed to an FiO2 of 0.06 for 1 h. Clonidine (12.5 μg/kg, IV) was administered to piglets 30 min prior to hypoxia. Hypoxia was confirmed by ATP and phosphocreatinine (PCr) levels. Cytosol was isolated and separated by 12% SDS–PAGE and probed with tyrosine phosphorylated (p) -Bax, Bad, Bcl-2 and Bcl-xl antibodies and bands were detected. The ATP levels (μmol/g brain) in the Nx, Hx, Clo + Hx were 4.3 ± 1.0 (P < 0.05 vs. Hx, Clo-Hx), 0.9 ± 0.8 and 1.5 ± 0.3, respectively. The PCr levels in the Nx, Hx, Clo + Hx were 2.7 ± 0.7 (P < 0.05 vs. Hx, Clo-Hx), 0.9 ± 0.2 and 0.9 ± 0.9, respectively. Ca2+-influx (pmoles/mg protein) was 4.96 ± 0.94 in Nx, 11.11 ± 2.38 in Hx, and 6.23 ± 2.07 in Clo + Hx (P < 0.05 Nx vs. Hx and Hx vs. Clo + Hx). p-Bcl-2 density was 21.1 ± 1.1 Nx, 58.9 ± 9.6 Hx and 29.5 ± 6.4 Clo + Hx (P < 0.05 vs. Hx). p-Bcl-xl density was 29.6 ± 1.5 Nx, 50.6 ± 7.4 Hx and 32.1 ± 0.1 Clo + Hx (P < 0.05 vs. Hx). p-Bax density was 38.6 ± 16.2 Nx, 46.1 ± 5.5 Hx and 41.6 ± 1.9 Clo + Hx groups (P = NS). p-Bad was 66.7 ± 12.8 Nx, 71.2 ± 6.8 Hx and 78.7 ± 22.5 Clo + Hx groups (P = NS). Results showed that clonidine administration prior to hypoxia prevents the hypoxia-induced increased nuclear Ca2+-influx and increased phosphorylation of Bcl-2 and Bcl-xl while phosphorylation of Bad and Bax was not altered. We conclude that post-translational modification of anti-apoptotic proteins Bcl-2 and Bcl-xl during hypoxia is nuclear Ca2+-influx-dependent. We propose that blockade of nuclear Ca2+-influx that prevents phosphorylation of antiapoptotic proteins may become a neuroprotective strategy.  相似文献   

4.
The present study aims to investigate the mechanism of EGFR kinase activation during hypoxia and tests the hypothesis that hypoxia-induced increased activation of EGFR kinase in the cerebral cortical membrane fraction of newborn piglets is mediated by nitric oxide (NO) derived from neuronal nitric oxide synthase (nNOS). Fifteen newborn piglets were divided into normoxic (Nx, n = 5), hypoxic (Hx, n = 5) and hypoxic-treated with nNOS inhibitor (Hx-nNOSi, n = 5). Hypoxia was induced by an FiO2 of 0.07 for 60 min. nNOS inhibitor I (selectivity >2,500 vs. endothelial NOS, eNOS, and >500 vs. inducible NOS, iNOS) was administered (0.4 mg/kg, i. v.) 30 min prior to hypoxia. EGFR kinase tyrosine phosphorylation at Tyr1173, an index of activation of EGFR kinase, was determined by Western blot analysis using an anti-phospho (pTyr1173)-EGFR kinase antibody. Protein bands were analyzed by imaging densitometry and expressed as absorbance (OD × mm2). EGFR kinase activity was determined radiochemically using immunopurified enzyme. EGFR kinase activity was expressed as pmols/mg protein/hr. Density of phosphor (pTyr1173)-EGFR kinase (OD × mm2) was 60.2 ± 9.8 in Nx, 177.0 ± 26.9 in Hx (P < 0.05 vs. Nx) and 79.9 ± 15.7 in Hx-nNOSi (P < 0.05 vs. Hx, P = NS vs. Nx). Activity of EGFR kinase (pmoles/mg protein/hr) was 4,603 ± 155 in Nx, 8,493 ± 427 in Hx (P < 0.05 vs. Nx) and 4,516 ± 104 in Hx-nNOSi (P < 0.05 vs. Hx, P = NS vs. Nx). Pretreatment with nNOS inhibitor prevented the hypoxia-induced increased phosphorylation and increased activity of EGFR kinase. We conclude that the mechanism of hypoxia-induced increased activation of EGFR kinase is mediated by nNOS-derived NO.  相似文献   

5.
6.
The present study investigates the correlation between the hypoxia-induced phosphorylation of cyclic AMP response element binding protein and the expression of apoptotic proteins (proapoptotic proteins Bax and Bad and antiapoptotic proteins Bcl-2 and Bcl-xl) during hypoxia in the cerebral cortex of newborn piglets. Piglets were divided into normoxic (Nx) and hypoxic (Hx, FiO2 = 0.06 for 1 h) groups. Cerebral tissue hypoxia was documented by ATP and phosphocreatine (PCr) levels. Ser133 phosphorylation of cyclic AMP response element binding (CREB) protein was determined by Western blot analysis using a specific anti-phosphorylated Ser133-CREB protein antibody. The expression of apoptotic proteins was determined by using specific anti-Bax, anti-Bad, anti-Bcl-2 and anti-Bcl-xl antibodies. ATP and PCr values (μmoles/g brain) in Hx were significantly different from Nx (ATP: 4.40 ± 0.39 in Nx vs. 1.19 ± 0.44 in Hx, P < 0.05 vs. Nx; PCr: 3.60 ± 0.40 in Nx vs. 0.70 ± 0.31 in Hx, P < 0.05 vs. Nx). Ser133 phosphorylated CREB protein (OD × mm2) was 74.55 ± 4.75 in Nx and 127.13 ± 19.36 in Hx (P < 0.05 vs. Nx). The expression of proapoptotic proteins Bax and Bad increased and strongly correlated with the increase in CREB protein phosphorylation (correlation coefficient r = 0.82 and r = 0.85, respectively). The expression of antiapoptotic proteins Bcl-2 and Bcl-xl did not show correlation with CREB protein phosphorylation. We conclude that cerebral hypoxia results in differential regulation of CREB protein-mediated expression of proapoptotic and antiapoptotic proteins in the cerebral cortex of newborn piglets. We propose that the increased expression of proapoptotic vs antiapoptotic genes will lead to an increased potential for apoptotic programmed cell death in the Hx newborn brain.  相似文献   

7.
Ca2+-activated chloride channels encoded by TMEM16A and 16B are important for regulating epithelial mucus secretion, cardiac and neuronal excitability, smooth muscle contraction, olfactory transduction, and cell proliferation. Whether and how the ubiquitous Ca2+ sensor calmodulin (CaM) regulates the activity of TMEM16A and 16B channels has been controversial and the subject of an ongoing debate. Recently, using a bioengineering approach termed ChIMP (Channel Inactivation induced by Membrane-tethering of an associated Protein) we argued that Ca2+-free CaM (apoCaM) is pre-associated with functioning TMEM16A and 16B channel complexes in live cells. Further, the pre-associated apoCaM mediates Ca2+-dependent sensitization of activation (CDSA) and Ca2+-dependent inactivation (CDI) of some TMEM16A splice variants. In this review, we discuss these findings in the context of previous and recent results relating to Ca2+-dependent regulation of TMEM16A/16B channels and the putative role of CaM. We further discuss potential future directions for these nascent ideas on apoCaM regulation of TMEM16A/16B channels, noting that such future efforts will benefit greatly from the pioneering work of Dr. David T. Yue and colleagues on CaM regulation of voltage-dependent calcium channels.  相似文献   

8.
Transient receptor potential (TRP) cation channels, which are conserved across mammals, flies, fish, sea squirts, worms, and fungi, essentially contribute to cellular Ca2+ signaling. The activity of the unique TRP channel in yeast, TRP yeast channel 1 (TRPY1), relies on the vacuolar and cytoplasmic Ca2+ concentration. However, the mechanism(s) of Ca2+-dependent regulation of TRPY1 and possible contribution(s) of Ca2+-binding proteins are yet not well understood. Our results demonstrate a Ca2+-dependent binding of yeast calmodulin (CaM) to TRPY1. TRPY1 activity was increased in the cmd1–6 yeast strain, carrying a non–Ca2+-binding CaM mutant, compared with the parent strain expressing wt CaM (Cmd1). Expression of Cmd1 in cmd1–6 yeast rescued the wt phenotype. In addition, in human embryonic kidney 293 cells, hypertonic shock-induced TRPY1-dependent Ca2+ influx and Ca2+ release were increased by the CaM antagonist ophiobolin A. We found that coexpression of mammalian CaM impeded the activity of TRPY1 by reinforcing effects of endogenous CaM. Finally, inhibition of TRPY1 by Ca2+–CaM required the cytoplasmic amino acid stretch E33–Y92. In summary, our results show that TRPY1 is under inhibitory control of Ca2+–CaM and that mammalian CaM can replace yeast CaM for this inhibition. These findings add TRPY1 to the innumerable cellular proteins, which include a variety of ion channels, that use CaM as a constitutive or dissociable Ca2+-sensing subunit, and contribute to a better understanding of the modulatory mechanisms of Ca2+–CaM.  相似文献   

9.
Dosemeci  Ayse  Choi  Calvin 《Neurochemical research》1997,22(9):1151-1157
A major protein in the postsynaptic density fraction is -CAM kinase II, the -subunit of the Ca2+/calmodulin-dependent protein kinase. Autophosphorylation of the postsynaptic density-associated CaM kinase II is likely to be a crucial event in the induction of activity-dependent synaptic modification. This study focuses on the regulation and consequences of Ca2+-independent autophosphorylation of the enzyme. In isolated postsynaptic densities, a sub-stochiometric level of autophosphorylation in the presence of Ca2+ is sufficient to trigger maximal Ca2+-independent autophosphorylation of -CaM Kinase II. A major fraction of the sites phosphorylated in the absence of Ca2+ can be dephosphorylated by the endogenous phosphatase activity in the preparation. Ca2+-independent autophosphorylation is correlated with a drastic decrease in calmodulin binding to postsynaptic densities. This may represent a physiological mechanism that lowers the calmodulin trapping capacity of the organelle, thus increasing the availability of calmodulin to other elements within a spine.  相似文献   

10.
The present study aims to investigate the mechanism of calmodulin modification during hypoxia and tests the hypothesis that hypoxia-induced increase in Tyr99 phosphorylation of calmodulin in the cerebral cortex of newborn piglets is mediated by NO derived from nNOS. Fifteen piglets were divided into normoxic (Nx, n = 5), hypoxic (Hx, FiO2 of 0.07 for 1 h, n = 5) and hypoxic-pretreated with nNOSi (Hx-nNOSi, n = 5) groups. nNOS inhibitor I (selectivity >2,500 vs. eNOS and >500 vs. iNOS) was administered (0.4 mg/kg, I.V.) 30 min prior to hypoxia. Cortical membranes were isolated and tyrosine phosphorylation (Tyr99 and total) of calmodulin determined by Western blot using anti-phospho-(pTyr99)-calmodulin and anti-pTyr antibodies. Protein bands were detected by enhanced chemiluminescence, analyzed by densitometry and expressed as absorbance. The pTyr99 calmodulin (ODxmm2) was 78.55 ± 10.76 in Nx, 165.05 ± 12.26 in Hx (P < 0.05 vs. Nx) and 96.97 ± 13.18 in Hx-nNOSi (P < 0.05 vs. Hx, P = NS vs. Nx). Expression of total tyrosine phosphorylated calmodulin was 69.24 ± 13.69 in Nx, 156.17 ± 16.34 in Hx (P < 0.05 vs. Nx) and 74.18 ± 3.9 in Hx-nNOSi (P < 0.05 vs. Hx, P = NS vs. Nx). The data show that administration of nNOS inhibitor prevented the hypoxia-induced increased Tyr99 phosphorylation of calmodulin. Total tyrosine phosphorylation of calmodulin was similar to Tyr99 phosphorylation. We conclude that the mechanism of hypoxia-induced modification (Tyr99 phosphorylation) of calmodulin is mediated by NO derived from nNOS. We speculate that Tyr99 phosphorylated calmodulin, as compared to non-phosphorylated, binds with a higher affinity at the calmodulin binding site of nNOS leading to increased activation of nNOS and increased generation of NO.  相似文献   

11.
Cardiac plasma membrane Ca2+/Mg2+ ecto-ATPase (myoglein) requires millimolar concentrations of either Ca2+ or Mg2+ for maximal activity. In this paper, we report its localization by employing an antiserum raised against the purified rat cardiac Ca2+/Mg2+ ATPase. As assessed by Western blot analysis, the antiserum and the purified immunoglobulin were specific for Ca2+/Mg2+ ecto-ATPase; no cross reaction was observed towards other membrane bound enzymes such as cardiac sarcoplasmic reticulum Ca2+-pump ATPase or sarcolemmal Ca2+-pump ATPase. On the other hand, the cardiac Ca2+/Mg2+ ecto-ATPase was not recognized by antibodies specific for either cardiac sarcoplasmic reticulum Ca2+-pump ATPase or plasma membrane Ca2+-pump ATPase. Furthermore, the immune serum inhibited the Ca2+/Mg2+ ecto-ATPase activity of the purified enzyme preparation. Immunofluorescence of cardiac tissue sections and neonatal cultured cardiomyocytes with the Ca2+/Mg2+ ecto-ATPase antibodies indicated the localization of Ca2+/Mg2+ ecto-ATPase in association with the plasma membrane of myocytes, in areas of cell-matrix or cell-cell contact. Staining for the Ca2+/Mg2+ ecto-ATPase was not cardiac specific since the antibodies detected the presence of membrane proteins in sections from skeletal muscle, brain, liver and kidney. The results indicate that Ca2+/Mg2+ ecto-ATPase is localized to the plasma membranes of cardiomyocytes as well as other tissues such as brain, liver, kidney and skeletal muscle.  相似文献   

12.
NO is known to modulate calcium handling and cellular signaling in the myocardium, but key targets for NO in the heart remain unidentified. Recent reports have implied that NO can activate calcium/calmodulin (Ca2+/CaM)-dependent protein kinase II (CaMKII) in neurons and the heart. Here we use our novel sensor of CaMKII activation, Camui, to monitor changes in the conformation and activation of cardiac CaMKII (CaMKIIδ) activity after treatment with the NO donor S-nitrosoglutathione (GSNO). We demonstrate that exposure to NO after Ca2+/CaM binding to CaMKIIδ results in autonomous kinase activation, which is abolished by mutation of the Cys-290 site. However, exposure of CaMKIIδ to GSNO prior to Ca2+/CaM exposure strongly suppresses kinase activation and conformational change by Ca2+/CaM. This NO-induced inhibition was ablated by mutation of the Cys-273 site. We found parallel effects of GSNO on CaM/CaMKIIδ binding and CaMKIIδ-dependent ryanodine receptor activation in adult cardiac myocytes. We conclude that NO can play a dual role in regulating cardiac CaMKIIδ activity.  相似文献   

13.
Isolated hepatocytes release 2–3 nmol Mg2+/mg protein or ~10% of the total cellular Mg2+ content within 2 minutes from the addition of agonists that increase cellular cAMP, for example, isoproterenol (ISO). During Mg2+ release, a quantitatively similar amount of Ca2+ enters the hepatocyte, thus suggesting a stoichiometric exchange ratio of 1 Mg2+:1Ca2+. Calcium induced Mg2+ extrusion is also observed in apical liver plasma membranes (aLPM), in which the process presents the same 1 Mg2+:1Ca2+ exchange ratio. The uptake of Ca2+ for the release of Mg2+ occurs in the absence of significant changes in Δψ as evidenced by electroneutral exchange measurements with a tetraphenylphosphonium (TPP+) electrode or 3H-TPP+. Collapsing the Δψ by high concentrations of TPP+ or protonophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) does not inhibit the Ca2+-induced Mg2+ extrusion in cells or aLPM. Further, the process is strictly unidirectional, serving only in Ca2+ uptake and Mg2+ release. These data demonstrate the operation of an electroneutral Ca2+/Mg2+ exchanger which represents a novel pathway for Ca2+ accumulation in liver cells following adrenergic receptor stimulation. This work was supported by National Institutes of Health Grant HL 18708.  相似文献   

14.
Membrane skeletal protein 4.1R80 plays a key role in regulation of erythrocyte plasticity. Protein 4.1R80 interactions with transmembrane proteins, such as glycophorin C (GPC), are regulated by Ca2+-saturated calmodulin (Ca2+/CaM) through simultaneous binding to a short peptide (pep11; A264KKLWKVCVEHHTFFRL) and a serine residue (Ser185), both located in the N-terminal 30 kDa FERM domain of 4.1R80 (H·R30). We have previously demonstrated that CaM binding to H·R30 is Ca2+-independent and that CaM binding to H·R30 is responsible for the maintenance of H·R30 β-sheet structure. However, the mechanisms responsible for the regulation of CaM binding to H·R30 are still unknown. To investigate this, we took advantage of similarities and differences in the structure of Coracle, the Drosophila sp. homologue of human 4.1R80, i.e. conservation of the pep11 sequence but substitution of the Ser185 residue with an alanine residue. We show that the H·R30 homologue domain of Coracle, Cor30, also binds to CaM in a Ca2+-independent manner and that the Ca2+/CaM complex does not affect Cor30 binding to the transmembrane protein GPC. We also document that both H·R30 and Cor30 bind to phosphatidylinositol-4,5 bisphosphate (PIP2) and other phospholipid species and that that PIP2 inhibits Ca2+-free CaM but not Ca2+-saturated CaM binding to Cor30. We conclude that PIP2 may play an important role as a modulator of apo-CaM binding to 4.1R80 throughout evolution.  相似文献   

15.
A multifunctional Ca2+/calmodulin dependent protein kinase was purified approximately 650 fold from cytosolic extract of Candida albicans. The purified preparation gave a single band of 69 kDa on sodium dodecyl sulfate polyacrylamide gel electrophoresis with its native molecular mass of 71 kDa suggesting that the enzyme is monomeric. Its activity was dependent on calcium, calmodulin and ATP when measured at saturating histone IIs concentration. The purified Ca2+/CaMPK was found to be autophosphorylated at serine residue(s) in the presence of Ca2+/calmodulin and enzyme stimulation was strongly inhibited by W-7 (CaM antagonist) and KN-62 (Ca2+/CaM dependent PK inhibitor). These results confirm that the purified enzyme is Ca2+/CaM dependent protein kinase of Candida albicans. The enzyme phosphorylated a number of exogenous and endogenous substrates in a Ca2+/calmodulin dependent manner suggesting that the enzyme is a multifunctional Ca2+/calmodulin-dependent protein kinase of Candida albicans.  相似文献   

16.
Partially purified plasma membrane fractions were prepared from guinea-pig pancreatic acini. These membrane preparations were found to contain an ATP-dependent Ca2+-transporter as well as a heterogenous ATP-hydrolytic activity. The Ca2+-transporter showed high affinity for Ca2+ (KCa 2+ = 0.04 ± 0.01 M), an apparent requirement for Mg2+ and high substrate specificity. The major component of ATPase activity could be stimulated by either Ca2+ or Mg2+ but showed a low affinity for these cations. At low concentrations, Mg2+ appeared to inhibit the Ca2+-dependent ATPase activity expressed by these membranes. However, in the presence of high Mg2+ concentration (0.5–1 mM), a high affinity Ca2+-dependent ATPase activity was observed (KCa 2+ = 0.08 ± 0.02 M). The hydrolytic activity showed little specificity towards ATP. Neither the Ca2+-transport nor high affinity Ca2+-ATPase activity were stimulated by calmodulin. The results demonstrate, in addition to a low affinity Ca2+ (or Mg+)-ATPase activity, the presence of both a high affinity Ca2+-pump and high affinity Ca2+-dependent ATPase. However, the high affinity Ca2+-ATPase activity does not appear to be the biochemical expression of the Ca2+-pump.Abbreviations Ca2+-ATPase calcium-activated, magnesium-dependent adenosine triphosphatase - CaM calmodulin - CDTA trans-1,2-diaminocyclohexane-N,N,N,N-tetraacetate - EDTA ethylene-diaminetetraacetate - EGTA ethylene glycol bis(-aminoethyl ether)-N,N,N,N-tetraacetate - NADPH reduced form of nicotinamide adenine dinucleotide phosphate  相似文献   

17.
Oyster (Pinctada fucata) calmodulin-like protein (CaLP), containing a C-terminally extra hydrophilic tail (150D–161K), is a novel protein involved in the regulation of oyster calcium metabolism. To investigate the importance of the extra fragment to the Ca2+/Mg2+-dependent conformational changes in the intact CaLP molecule and the interactions between CaLP and its target proteins, a truncated CaLP mutant (M-CaLP) devoid of the extended C-terminus was constructed and overexpressed in Escherichia coli. The conformational characteristics of M-CaLP were studied by CD and fluorescence spectroscopy and compared with those of the oyster CaM and CaLP. The far-UV CD results reveal that the extra tail has a strong effect on the Ca2+-induced, but a relatively weak effect on the Mg2+-induced conformational changes in CaLP. However, upon Ca2+ or Mg2+ binding, only slight changes for intrinsic phenylalanine and tyrosine fluorescence spectra between M-CaLP and CaLP are observed. Our results also indicate that the extra tail can significantly decrease the exposure of the hydrophobic patches in CaLP. Additionally, affinity chromatography demonstrates that the target binding of CaLP is greatly influenced by its additional tail. All our results implicate that the extra tail may play some important roles in the interactions between CaLP and its targets in vivo.  相似文献   

18.
The interaction of calmodulin (CaM) with the receptor for retinol uptake, STRA6, involves an α-helix termed BP2 that is located on the intracellular side of this homodimeric transporter (Chen et al., 2016 [1]). In the absence of Ca2+, NMR data showed that a peptide derived from BP2 bound to the C-terminal lobe (C-lobe) of Mg2+-bound CaM (MgCaM). Upon titration of Ca2+ into MgCaM-BP2, NMR chemical shift perturbations (CSPs) were observed for residues in the C-lobe, including those in the EF-hand Ca2+-binding domains, EF3 and EF4 (CaKD = 60 ± 7 nM). As higher concentrations of free Ca2+ were achieved, CSPs occurred for residues in the N-terminal lobe (N-lobe) including those in EF1 and EF2 (CaKD = 1000 ± 160 nM). Thermodynamic and kinetic Ca2+ binding studies showed that BP2 addition increased the Ca2+-binding affinity of CaM and slowed its Ca2+ dissociation rates (koff) in both the C- and N-lobe EF-hand domains, respectively. These data are consistent with BP2 binding to the C-lobe of CaM at low free Ca2+ concentrations (<100 nM) like those found at resting intracellular levels. As free Ca2+ levels approach 1000 nM, which is typical inside a cell upon an intracellular Ca2+-signaling event, BP2 is shown here to interact with both the N- and C-lobes of Ca2+-loaded CaM (CaCaM-BP2). Because this structural rearrangement observed for the CaCaM-BP2 complex occurs as intracellular free Ca2+ concentrations approach those typical of a Ca2+-signaling event (CaKD = 1000 ± 160 nM), this conformational change could be relevant to vitamin A transport by full-length CaCaM-STRA6.  相似文献   

19.
We investigated the concentration- and Ca2+-dependent effects of CaM mutants, CaM12 and CaM34, in which Ca2+-binding to its N- and C-lobes was eliminated, respectively, on the CaV1.2 Ca2+ channel by inside-out patch clamp in guinea-pig cardiomyocytes. Both CaM12 and CaM34 (0.7-10 μM) applied with 3 mM ATP produced channel activity after “rundown”. Concentration-response curves were bell-shaped, similar to that for wild-type CaM. However, there was no obvious leftward shift of the curves by increasing [Ca2+], suggesting that both functional lobes of CaM were necessary for the Ca2+-dependent shift. However, channel activity induced by the CaM mutants showed Ca2+-dependent decrease, implying a Ca2+ sensor existing besides CaM. These results suggest that both N- and C-lobes of CaM are required for the Ca2+-dependent regulations of CaV1.2 Ca2+ channels.  相似文献   

20.
The cytoplasmic Ca2+ concentration ([Ca2+]cyt) in resting cells in an equilibrium between several influx and efflux mechanisms. Here we address the question of whether capacitative Ca2+ entry to some extent is active at resting conditions and therefore is part of processes that guarantee a constant [Ca2+]cyt. We measured changes of [Ca2+]cyt in RBL-1 cells with fluorometric techniques. An increase of the extracellular [Ca2+] from 1.3 mM to 5 mM induced an incrase in [Ca2+]cyt from 105±10 nM to 145±8.5 nM. This increase could be inhibited by 10 μM Gd3+, 10 μM La3+ or 50 μM 2-aminoethoxydiphenyl borate, blockers of capacitative Ca2+ entry. Application of those blockers to a resting cell in a standard extracellular solution (1.3 mM Ca2+) resulted in a decrease of [Ca2+]cyt from 105±10 nM to 88.5±10 nM with La3+, from 103±12 to 89±12 nM with Gd3+ and from 102±12 nM to 89.5±5 nM with 2-aminoethoxydiphenyl borate. From these data, we conclude that capacitative Ca2+ entry beside its function in Ca2+ signaling contributes to the regulation of resting [Ca2+]cyt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号