首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Repetitive gametic selection for a higher frequency of the Adh1-Ssemilethal mutant allele of the alcohol dehydrogenase (ADH) gene yielded viable homozygotes Adh1-SS. The plants varied in phenotype from weak mutant to nearly normal (restored). Phenotypically different plants were individually tested for combining ability. This parameter was high in plants with the mutant phenotype and tended to decrease, rather than further increase, in plants with a restored normal phenotype. The results are discussed in terms of viability restoration mechanisms in homozygotes for semilethal mutant alleles.  相似文献   

2.
Konovalov AA 《Genetika》2000,36(10):1380-1387
Selection for an increased frequency of mutant semilethal allele Adh1-S of the gene for alcohol dehydrogenase (ADH) was conducted in inbred families of sugar beet. Starting from the fourth generation, viable plants of mutant Adh1-SS homozygotes appeared. In the sixth generation of selection, the combinative ability of mutant homozygotes SS, normal homozygotes FF, and heterozygotes FS was estimated. The hybrids of mutant homozygotes outperformed the hybrids of normal homozygotes in all parameters examined (germinating capacity of seeds, length and weight of 1-week shoots, chlorophyll content in leaves, and root weight). The hybrids of heterozygotes had intermediate values of the parameters. The results obtained are discussed with regard to the mechanisms underlying the recovery of viability of mutant homozygotes and the formation of a compensating gene complex (CGC).  相似文献   

3.
4.
H Aoyama  S Teramoto  Y Shirasu 《Teratology》1988,37(2):159-166
A new mutant gene which caused fusion of lung lobes was found in the Wistar rat. The genetic analysis revealed an autosomal recessive inheritance and the mutant gene was named fused pulmonary lobes (gene symbol: fpl). The right lung of the fpl/fpl homozygotes had fused lobes of varying degrees. The fpl/fpl homozygotes were semilethal at the neonatal stage and had externally visible associated malformations such as malocclusion of incisors, eyelid anomalies, and digit abnormalities in the fore- and hindlimbs with different incidences. These traits were considered to be caused by the pleiotropic effects of the fpl gene.  相似文献   

5.
Molecular analysis of a somaclonal mutant of maize alcohol dehydrogenase   总被引:6,自引:0,他引:6  
Summary Plants regenerated from tissue cultures of maize were screened for variants of ADH1 and ADH2. Root extracts of 645 primary regenerant plants were tested, and one stable mutant of Adh1 was detected. The mutant gene (Adh1-Usv) produces a functional enzyme with a slower electrophoretic mobility than that of the progenitor Adh1-S allele, and is stably transmitted to progeny. The mutant was not present among four other plants derived from the same immature embryo, and therefore arose as a consequence of the culture procedure. The gene of Adh1-Usv was cloned and sequenced. A single base change in exon 6 was the only alteration found in the gene sequence. This would translate in the polypeptide sequence to a valine residue substituting for a glutamic acid residue, resulting in the loss of a negative charge and the production of a protein with slower electrophoretic mobility.Abbreviations kb kilobase pairs - ADH alcohol dehydrogenase  相似文献   

6.
Insertion of the maize transposable element Mu-1 into the first intron of the alcohol dehydrogenase locus (Adh1) of maize produced mutant Adh1-S3034 with 40% of the wild-type level of protein and mRNA. Continued instability at this locus resulted in secondary mutations with lower levels of protein expression. One of these, Adh1-S3034a, has no detectable ADH1 expression. This paper describes the precise nature of the changes in the Adh1 gene that gave rise to the S3034a allele. The Mu-1 element is still present in the mutant, but Adh1 sequences immediately adjacent to the element are deleted. The deletion starts precisely at the Mu-1 insertion site and extends 74 bp leftward removing part of the first intron, the intron:exon junction and 2 bp of the eleventh amino acid codon in the first exon of the gene. Tests for reversion within the somatic tissue of plants show that mutant S3034a, unlike its progenitor, is stably null for ADH1 activity.  相似文献   

7.
The position of the structural gene coding for alcohol dehydrogenase (ADH) in Drosophila melanogaster has been shown to be within polytene chromosome bands 35B1 and 35B3, most probably within 35B2. The genetic and cytological properties of twelve deficiencies in polytene chromosome region 34--35 have been characterized, eleven of which include Adh. Also mapped cytogenetically are seven other recessive visible mutant loci. Flies heterozygous for overlapping deficiencies that include both the Adh locus and that for the outspread mutant (osp: a recessive wing phenotype) are homozygous viable and show a complete ADH negative phenotype and strong osp phenotype. These deficiencies probably include two polytene chromosome bands, 35B2 and 35B3.  相似文献   

8.
Targeting of mouse alcohol dehydrogenase genes Adh1, Adh3, and Adh4 resulted in null mutant mice that all developed and reproduced apparently normally but differed markedly in clearance of ethanol and formaldehyde plus metabolism of retinol to the signaling molecule retinoic acid. Following administration of an intoxicating dose of ethanol, Adh1 -/- mice, and to a lesser extent Adh4 -/- mice, but not Adh3 -/- mice, displayed significant reductions in blood ethanol clearance. Ethanol-induced sleep was significantly longer only in Adh1 -/- mice. The incidence of embryonic resorption following ethanol administration was increased 3-fold in Adh1 -/- mice and 1.5-fold in Adh4 -/- mice but was unchanged in Adh3 -/- mice. Formaldehyde toxicity studies revealed that only Adh3 -/- mice had a significantly reduced LD50 value. Retinoic acid production following retinol administration was reduced 4.8-fold in Adh1 -/- mice and 8.5-fold in Adh4 -/- mice. Thus, Adh1 and Adh4 demonstrate overlapping functions in ethanol and retinol metabolism in vivo, whereas Adh3 plays no role with these substrates but instead functions in formaldehyde metabolism. Redundant roles for Adh1 and Adh4 in retinoic acid production may explain the apparent normal development of mutant mice.  相似文献   

9.
10.
Homozygous glabra2 (gl2) mutant Arabidopsis thaliana Landsberg erecta plants with only a few rudimentary single spiked trichomes on the leaf margin were transformed with a genomic clone of GL2, resulting in partial restoration of the normal leaf trichome phenotype. The introduced GL2 transgene was configured as part of an FLP recombinase-responsive gene switch, which permitted visibly marked gl2 mutant clonal sectors to be generated by FLP recombinase-mediated deletion of the GL2 transgene with concomitant activation of a previously silent beta-glucuronidase (GUS) marker gene. GUS marked sectors extending through all three leaf cell layers (L1, L2, and L3) displayed the anticipated gl2 mutant phenotype, whereas immediately adjacent unmarked tissue, and unmarked tissues overlaying GUS sectors restricted to the L2 and/or L3 cell layers, retained the GL2 restored phenotype. These data support the view that the GL2 gene product acts in a region-autonomous manner within a single cell layer and indicate that GL2 gene expression in the L1 layer is sufficient for GL2-directed outgrowth of trichomes.  相似文献   

11.
In this paper we describe the identification of a gene, MsDWF1 coding for a putative gibberellin 3-beta-hydroxylase (GA3ox), whose natural mutation is conditioning a dwarf growth phenotype in Medicago sativa. The dwarf phenotype could not be complemented with grafting, which indicates that the bioactive gibberellin compound necessary for shoot elongation is immobile. On the contrary, exogenously added gibberellic acid restored normal growth. The genetic position of the Msdwf1 gene was mapped to linkage group 2 (LG2) and the physical location was delimited by map-based cloning using Medicago truncatula genomic resources. Based on the similar appearance and behavior of the dwarf Medicago sativa plants to the pea stem length mutant (le) as well as the synthenic map position of the two genes it was postulated that MsDWF1 and pea Le are orthologs. The comparison of wild type and mutant allele sequences of MsGA3ox revealed an amino acid change in a conserved position in the mutant allele, which most probably impaired the function of the enzyme. Our results indicate that the dwarf phenotype was the consequence of this mutation.  相似文献   

12.
13.
The unstable mutation Adh1-Fm335 contains a Dissociation (Ds1) transposable element at position +53 in the untranslated leader of the maize Alcohol dehydrogenase-1 (Adh1) gene. Excision of Ds1 is known to generate new alleles with small additions and rearrangements of Adh1 DNA. We characterized 16 revertant alleles with respect to ADH1 activity levels in scutellum (nutritive tissue of the seed), anaerobic root, and pollen. Whereas gene expression was not different from the wild type in the sporophytic tissues of the scutellum and anaerobic root, there were strong allelic differences in pollen. One allele underexpressed pollen ADH1 at 48% of the wild-type level, and another overexpressed pollen ADH1 at 163% of the wild-type level. Quantitative RNase protection assays demonstrated that the mutant phenotypes reflected changes in the levels of steady state mRNA in pollen. These data provide a definitive demonstration of an overexpression mutant in plants and further show that marked increases in mRNA levels can follow minor alterations in central untranslated leader sequences. The nucleotide sequence of 12 new revertant alleles and the molecular mechanisms responsible for pollen-specific gene expression are discussed.  相似文献   

14.
The ndh genes encoding for the subunits of NAD(P)H dehydrogenase complex represent the largest family of plastid genes without a clearly defined function. Tobacco (Nicotiana tabacum) plastid transformants were produced in which the ndhB gene was inactivated by replacing it with a mutant version possessing translational stops in the coding region. Western-blot analysis indicated that no functional NAD(P)H dehydrogenase complex can be assembled in the plastid transformants. Chlorophyll fluorescence measurements showed that dark reduction of the plastoquinone pool by stromal reductants was impaired in ndhB-inactivated plants. Both the phenotype and photosynthetic performance of the plastid transformants was completely normal under favorable conditions. However, an enhanced growth retardation of ndhB-inactivated plants was revealed under humidity stress conditions causing a moderate decline in photosynthesis via stomatal closure. This distinctive phenotype was mimicked under normal humidity by spraying plants with abscisic acid. Measurements of CO(2) fixation demonstrated an enhanced decline in photosynthesis in the mutant plants under humidity stress, which could be restored to wild-type levels by elevating the external CO(2) concentration. These results suggest that the plastid NAD(P)H:plastoquinone oxidoreductase in tobacco performs a significant physiological role by facilitating photosynthesis at moderate CO(2) limitation.  相似文献   

15.
Summary We have found a null Adh1 allele which arose as a somaclonal variant following tissue culture of maize embryos carrying Adh1-1S and Adh1-1F alleles. Cloning and sequencing shows that the mutant allele derives from Adh1-1S and that there has been a single base change in the coding region of the gene which converts and AAG lysine codon to a TAG stop codon. The rate of nucleotide substitution (two per 218 embryos cultured) is much greater than normal mutation rates.  相似文献   

16.
17.
Serine hydroxymethyltransferase(SHMT) is important for one carbon metabolism and photorespiration in higher plants for its participation in plant growth and development,and resistance to biotic and abiotic stresses. A rice serine hydroxymethyltransferase gene, Os SHM1, an ortholog of Arabidopsis SHM1, was isolated using map-based cloning. The osshm1 mutant had chlorotic lesions and a considerably smaller,lethal phenotype under natural ambient CO2 concentrations,but could be restored to wild type with normal growth under elevated CO2levels(0.5% CO2), showing a typical photorespiratory phenotype. The data from antioxidant enzymes activity measurement suggested that osshm1 was subjected to signi fi cant oxidative stress. Also, Os SHM1 was expressed in allorgans tested(root, culm, leaf, and young panicle) but predominantly in leaves. Os SHM1 protein is localized to the mitochondria. Our study suggested that molecular function of the Os SHM1 gene is conserved in rice and Arabidopsis.  相似文献   

18.
Alcohol dehydrogenase (ADH) deficiency results in decreased retinol utilization, but it is unclear what physiological roles the several known ADHs play in retinoid signaling. Here, Adh1, Adh3, and Adh4 null mutant mice have been examined following acute and chronic vitamin A excess. Following an acute dose of retinol (50 mg.kg(-1)), metabolism of retinol to retinoic acid in liver was reduced 10-fold in Adh1 mutants and 3.8-fold in Adh3 mutants, but was not significantly reduced in Adh4 mutants. Acute retinol toxicity, assessed by determination of the LD(50) value, was greatly increased in Adh1 mutants and moderately increased in Adh3 mutants, but only a minor effect was observed in Adh4 mutants. When mice were propagated for one generation on a retinol-supplemented diet containing 10-fold higher vitamin A than normal, Adh3 and Adh4 mutants had essentially the same postnatal survival to adulthood as wild-type (92-95%), but only 36% of Adh1 mutants survived to adulthood with the remainder dying by postnatal day 3. Adh1 mutants surviving to adulthood on the retinol- supplemented diet had elevated serum retinol signifying a clearance defect and elevated aspartate aminotransferase indicative of increased liver damage. These findings indicate that ADH1 functions as the primary enzyme responsible for efficient oxidative clearance of excess retinol, thus providing protection and increased survival during vitamin A toxicity. ADH3 plays a secondary role. Our results also show that retinoic acid is not the toxic moiety during vitamin A excess, as Adh1 mutants have less retinoic acid production while experiencing increased toxicity.  相似文献   

19.
Genetic approaches using Arabidopsis thaliana aimed at the identification of mutations affecting events involved in auxin signalling have usually led to the isolation of auxin-resistant mutants. From a selection screen specifically developed to isolate auxin-hypersensitive mutants, one mutant line was selected for its increased sensitivity to auxin (x 2 to 3) for the root elongation response. The genetic analysis of sax1 (hypersensitive to abscisic acid and auxin) indicated that the mutant phenotype segregates as a single recessive Mendelian locus, mapping to the lower arm of chromosome 1. Sax1 seedlings grown in vitro showed a short curled primary root and small, round, dark-green cotyledons. In the greenhouse, adult sax1 plants were characterized by a dwarf phenotype, delayed development and reduced fertility. Further physiological characterization of sax1 seedlings revealed that the most striking trait was a large increase (x 40) in ABA-sensitivity of root elongation and, to a lesser extent, of ABA-induced stomatal closure; in other respects, hypocotyl elongation was resistant to gibberellins and ethylene. These alterations in hormone sensitivity in sax1 plants co-segregated with the dwarf phenotype suggesting that processes involved in cell elongation are modified. Treatment of mutant seedlings with an exogenous brassinosteroid partially rescued a wild-type size, suggesting that brassinosteroid biosynthesis might be affected in sax1 plants. Wild-type sensitivities to ABA, auxin and gibberellins were also restored in sax1 plants by exogenous application of brassinosteroid, illustrating the pivotal importance of the BR-related SAX1 gene.  相似文献   

20.
Summary Mutations at the Adh1 locus in maize were selected from plants infected with barley stripe mosaic virus (BSMV). Pollen from the infected inbred line 1s2p, which is homozygous for Adh1-S (abbreviated S), Adh2-P, c and r was treated with allyl alcohol and applied to silks of a tester stock homozygous for Adh1-F, Adh2-N, C and R. From these pollinations 356 kernels arose on the F1 ears. Of these eight showed no activity of the S allele in scutellar samples while two exhibited low levels. Five of the putative mutant kernels germinated and two of these contained the contamination markers Adh2-P, c and r. The newly arisen mutations were designated S5446 and S5453. S5453 exhibited an abnormally low level of ADH activity in the F1 scutellum. In the F2 generation the mutant reverted at a high frequency with only about 5% of the S5453 alleles expressing low levels. DNA blotting and hybridization analyses showed no alterations in the restriction patterns of S5453 when compared to the progenitor S allele. S5446 which exhibited no ADH activity in the F1 scutellum is unstable in the pollen; reversion frequencies approaching 10-2 were observed in samples from some plants. Restriction digestion patterns of DNA from this mutant revealed the presence of a 3.3 kb insertion at Adh. The insert does not appear to contain sequences homologous to the BSMV genome but rigorous analyses remain to be carried out. It is hypothesized that BSMV infection may mobilize endogenous but dormant transposable elements in maize.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号