首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stem cells in plants, established during embryogenesis, are located in the centers of the shoot apical meristem (SAM) and the root apical meristem (RAM). Stem cells in SAM have a capacity to renew themselves and to produce new organs and tissues indefinitely. Although fully differentiated organs such as leaves do not contain stem cells, cells in such organs do have the capacity to re-establish new stem cells, especially under the induction of phytohormones in vitro. Cytokinin and auxin are critical in creating position signals in the SAM to maintain the stem cell organizing center and to position the new organ primordia, respectively. This review addresses the distinct features of plant stem cells and focuses on how stem cell renewal and differentiation are regulated in SAMs.  相似文献   

2.
A salient feature of shoot meristem growth is the maintenance of distinct anatomical and morphological features despite a continuous flux of cells. To investigate how meristem organization is self-perpetuated, we developed a protocol for the analysis of meristem growth in 3-D. Our protocol uses a non-destructive replica method to follow the pattern of cell expansion and cell divisions on the meristem surface over several days. Algorithms to reconstruct the meristem surface and compute its curvature and rate of extension were implemented. We applied this approach to the shoot apical meristem of Anagallis arvensis and showed that a subcellular resolution of extension rates can be achieved. This is the first detailed quantitative analysis of meristem geometry and surface expansion in 3-D. This new approach will be useful to connect cellular activities such as cell expansion, cell division, and differential gene expression with overall meristem morphogenesis.  相似文献   

3.
李俊  伍晓明 《西北植物学报》2012,32(7):1488-1499
被子植物早期胚胎形态建成是其有性生殖过程中一个重要发育阶段。在这一阶段中,被子植物形体基本特征形成,包括顶-基轴极性建立、不同细胞层分化以及分生组织形成。合子极性直接与顶基细胞命运相关,但其极性产生机理仍然不明。研究表明,WOX家族转录因子、生长素定向运输以及生长素响应应答可能参与了早期顶-基模型建成;辐射对称模型的建立可能由细胞与细胞间相互作用来介导;生长素流可能参与胚胎顶端组织形成。该文对近年来被子植物早期胚胎形态建成过程中的合子极性建立与生长、合子分裂及其顶基细胞的形成、胚根原特化及根极的形成、辐射对称模式及表皮原特化、顶端分生组织特化及子叶起始等方面的研究进展进行了综述。  相似文献   

4.
  相似文献   

5.
Apical parts of stems of Brassica napus L. var. oleifera cv. Gorczanski (winter rape) and cv. Mlochowski (spring rape), grown in vitro, were subjected to direct electric current (DC) of different polarity, duration and voltage. The positive orientation of DC, i.e. anode attached to the apical part and cathode to the medium, markedly enhanced the differentiation of the apical meristem in winter rape. The reverse polarity was without effect. DC treatment of positive polarity resulted in spring rape in transition of all explants to generative state while 70 % of non-treated plants remained at vegetative stage. Even negative orientation of DC brought about a rise in percentage of flowering plants with regard to control. The developmental effects of DC were dependent only to a low degree or not at all on duration and voltage of the treatment.  相似文献   

6.
Plants continuously generate organs at the flanks of their shoot apical meristems (SAMs). The patterns in which these organs are initiated, also called patterns of phyllotaxis, are highly stereotypic and characteristic for a particular species or developmental stage. This stable, predictable behaviour of the meristem has led to the idea that organ initiation must be based on simple and robust mechanisms. This conclusion is less evident, however, if we consider the very dynamic behaviour of the individual cells. How dynamic cellular events are coordinated and how they are linked to the regular patterns of organ initiation is a major issue in plant developmental biology.  相似文献   

7.
The formation of shoot and root meristems that ultimately give rise to all tissues of the plant body occurs for the first time during embryogenesis. Meristem formation has traditionally been defined in terms of the appearance of histological features of meristems; this approach has led to varying interpretations of the timing of meristem formation relative to other events in embryogenesis. Markers that would provide more objective criteria for the analysis of meristem formation have not been widely available. The maize homeobox gene, knotted1 (kn1), is expressed in shoot meristems throughout postembryonic stages of shoot development. In order to determine whether this gene is expressed in the shoot meristem from its earliest inception, we examined the expression of kn1 in embryos at a series of stages by in situ hybridization to kn1 mRNA and immunolocalization of KN1 protein. Our results show that the onset of kn1 expression is temporally and spatially coincident with the earliest histologically recognizable signs of shoot meristem formation in the embryo, and thus provides a valuable marker for this process. © 1995 Wiley-Liss, Inc.  相似文献   

8.
植物干细胞培养研究进展   总被引:1,自引:0,他引:1  
植物干细胞位于分生组织,是处于未分化状态的细胞,液泡化程度低,具有较高的线粒体活性,遗传稳定,具有很强的自我更新和再生能力。植物干细胞培养在下游制药和功能性食品以及化妆品行业具有广泛的应用潜质。文中综述了植物干细胞的基本培养技术、鉴别技术,为该领域的深入研究提供参考。  相似文献   

9.
An efficient in vitro protocol was established for developing pathogen-free plantlets in Cucurbita pepo through meristem culture. Meristems of about 0.3–0.5 mm in size were isolated from shoot tips of 25–30 day old in vitro grown plants. For primary establishment of isolated apical meristem, MS liquid medium supplemented with 2.0 mgl KIN and 0.5 mg/l GA3 was found to be most effective in both cultivars. MS semisolid medium containing 2.0 mg/l BAP were found to be most effective for shoot development from primarily established meristem in both cultivars. A good number of shoots were not concomitant with good rooting. The best root induction was found in media having 1.0 mg/l IBA in cv. Bulum. It was found that cv. Bulum was better than cv. Rumbo in all stages of meristem culture. The presence of virus in plantlets was achieved by DAS-ELISA test, where 68–81% plantlets have been proved to be virus free among the studied viruses. Healthy growth and vigour was observed in meristem derived plants over their source plants after cultivation under natural conditions.  相似文献   

10.
This comprehensive study of early embryology in Ceratopteris richardii combines light microscopy with the first ultrastructural evaluation of any pteridophyte embryo. Emphasis is placed on ontogeny of the foot and placental transfer cells. The embryology of C. richardii shares many similarities with that of other polypodiacious ferns while exhibiting distinctive division patterns. Formative embryonic stages have been reconstructed into three-dimensional models for ease of interpretation. The zygote divides perpendicular to the gametophyte plane and anterioposterior axis. This division establishes a prone embryological habit that maximizes rapid independent establishment of a leaf-root axis in a cordate gametophyte. After the formation of a globular eight-celled stage, initials of the first leaf, and root and shoot apical meristems are defined early by discrete formative divisions. Concomitantly, the foot expands and differentiates to transport nutrients from the gametophyte for the developing embryonic organs. Transfer cell wall ingrowth deposition begins in the gametophyte placental cells before the adjacent sporophyte cells just after the eight-celled stage. These observations provide an anatomical framework for future comparative developmental genetic studies of embryogenesis in free-sporing plants.  相似文献   

11.
Podostemaceae are unusual aquatic angiosperms adapting to extreme habitats, i.e., rapids and waterfalls, and have unique morphologies. We investigated the developmental anatomy of reproductive shoots scattered on crustose roots of Hydrobryum japonicum by scanning electron microscopy and using semi-thin serial sections. Two developmental patterns were observed: bracts arise either continuously from an area of meristematic cells that has produced leaves, or within differentiated root ground tissue beneath, and internal to, leaf base scars after an interruption. In both patterns, the bract primordia arise endogenously at the base of youngest bracts in the absence of shoot apical meristem, involving vacuolated-cell detachment to each bract separately. The different transition patterns of reproductive shoot development may be caused by different stages of parental vegetative shoots. The floral meristem arises between the two youngest bracts, and is similarly accompanied by cell degeneration. In contrast, the floral organs, including the spathella, arise exogenously from the meristem. Bract development, like vegetative leaf development, is unique to this podostemad, while floral-organ development is conserved.  相似文献   

12.
Picolinic acid-induced direct somatic embryogenesis in sweet potato   总被引:1,自引:0,他引:1  
Somatic embryos are being considered as an alternative material for in vitro germplasm conservation of sweet potato [(Ipomoea batatas (L.) Lam.)]. Picolinic acid was tested for somatic embryo production in sweet potato apical meristem tip cultures. Low level (0.2 mgl-1) of picolinic acid combined with kinetin or 6-benzylamino purine (6-BAP) (1.0 and 2.0 mgl-1) suppressed shoot growth and induced callus proliferation. Increased amount of picolinic acid (2 and 3 mgl-1) in combination with kinetin (0.25 and 1.0 mgl-1) induced direct somatic embryogenesis from apical meristem tips of variety Regal but not in Jewel. The primary embryos matured and germinated bipolarly yielding whole plantlets and unipolarly producing embryogenic hyperhydrated-fasciated shoots. The hyperhydrated-fasciated shoots, when cultured in picolinic and kinetin-enriched medium, produced secondary embryos. The secondary embryos also germinated bipolarly and unipolarly, resulting in subsequent cycles of embryogenesis. This recurrent embryogenesis ensures maintenance and proliferation of embryogenic tissues. Somatic embryos were also formed in mannitol-induced hyperhydrated shoots in response to picolinic acid and kinetin or 6-BAP treatment. Embryogenesis did not occur in non-hyperhydrated leaf, petiole, and internode sections.  相似文献   

13.
Plant clonality, mutation, diplontic selection and mutational meltdown   总被引:3,自引:0,他引:3  
Apomixis is a very common characteristic in vascular plants. It occurs in two general forms: either subversion of the sexual system (agamospermous seeds or apogamous sporophytes in non-seed plants) or vegetative reproduction. In this communication, only the mutational consequences of vegetative reproduction are considered. Vegetative reproduction involves the replication of apical meristems, especially shoot apical meristems. Three general types of shoot apical meristems occur in the vascular plants: single tetrahedral apical initial, unstratified with impermanent initials and stratified with impermanent initials. Each meristem type has different consequences with regard to mutation, diplontic selection and the possibility of mutational meltdown.  © 2003 The Linnean Society of London. Biological Journal of the Linnean Society , 2003, 79 , 61–67.  相似文献   

14.
The essential nature of meristematic tissues is addressed with reference to conceptual frameworks that have been developed to explain the behaviour of animal stem cells. Comparisons are made between different types of plant meristems with the objective of highlighting common themes that might illuminate underlying mechanisms. A more in depth comparison of the root and shoot apical meristems is made which suggests a common mechanism for maintaining stem cells. The relevance of organogenesis to stem cell maintenance is discussed, along with the nature of underlying mechanisms which help ensure that stem cell production is balanced with the depletion of cells through differentiation. Mechanisms that integrate stem cell behaviour in the whole plant are considered, with a focus on the roles of auxin and cytokinin. The review concludes with a brief discussion of epigenetic mechanisms that act to stabilise and maintain stem cell populations.  相似文献   

15.
16.
水稻幼穗形态发生与顶端分生组织的研究   总被引:2,自引:0,他引:2  
应用“铸模”扫描电镜法和组织切片技术对水稻幼穗的形态发生过程和顶端分生组织( Apicalm eristem )进行了系统而细致的研究。研究表明:从营养生长转入到生殖生长早期,水稻生长锥发生了显著的变化,根据苗端分生组织( Shoot apicalm eristem , S A M )中原基分化的属性,将水稻幼穗早期起源和发育过程分为花序顶端分生组织期( Inflorescence apical m eristem phase, I A M P)、小穗顶端分生组织期( Spikelet apical m eristem phase, S P A M P)、花顶端分生组织期( Floral m eristem phase, F M P)。在这 3 个大的发育时期,又根据每一发育时期中的原基分生组织生长发育的程度及先后顺序分别又可分为:花序 0 期、花序Ⅰ期、花序Ⅱ期;小穗期Ⅰ期、小穗Ⅱ期、小穗Ⅲ期;内稃原基分化期、浆片原基分化期、雄蕊原基分化期、心皮原基分化期。同时,在研究过程中还发现了一些与前人所不同的形态发生特征,并初步探讨了水稻幼穗早期的起源及分化发育的机理。  相似文献   

17.
Root apical meristems (RAMs) in dicotyledonous plants have two organizational schemes; closed (with highly organized tiers) and open (tiers lacking or disorganized). These schemes are commonly believed to remain unchanged during the growth of the root axis. Individual roots are commonly thought to have indeterminate growth. We challenge these two generalizations through the study of five species with closed apical organization: Clarkia unguiculata L., Oxalis corniculata L., Dianthus caryophyllus L., Blumenbachia hieronymi Urb., and Salvia farinaceae Benth. cv. Strata. These roots have phased growth patterns where early growth is followed by deceleration, after which the initial cells stop dividing, elongation ceases, and the root reaches its determinate length. At or before reaching determinacy, the root apical meristem stops maintaining its closed organization and becomes less organized. These observations will be placed in context with observations from the literature to suggest two new generalizations, namely, that apical organization does change over the growth phases of roots, and that roots are determinate.  相似文献   

18.
以玉米光敏感自交系CML288和不敏感自交系黄早4为实验材料,采用长日照15 h、短日照9 h的不同光周期处理,利用激光扫描共聚焦显微镜(laser scanning confocal microscope, LCSM)观察了不同叶龄期玉米茎尖分生组织的形态学变化.结果表明,短日照能促进玉米开花,促进茎端分生组织向生殖生长转化,黄早4和CML288分别在6叶期和7叶期完成茎尖分生组织的生殖转化;而长日照则明显延迟开花,延迟茎尖分生组织向生殖生长转化,黄早4和CML288分别在8叶期和11叶期完成茎尖分生组织的生殖转化;因此光周期诱导玉米开花因光照条件和品种有一定差异,短日照条件下,光敏感和不敏感的玉米自交系开花提前,花期更接近,而长日照条件下光敏感玉米自交系开花延迟要比不敏感自交系明显得多.  相似文献   

19.
20.
In order to elucidate the role of proteins CLV1, CLV2, CLV3, and WUS in the mechanism underlying the maintenance of compartmental structure (spatial arrangement of the zones of biosynthesis of marker proteins) of the shoot apical meristem, a model of such mechanism was developed. Computational experiments led to biologically plausible solutions only when synthesis of substance W in a space between the organizing center and meristem apex was limited by the mechanism based on interaction of CLV3 with membrane receptor CLV1/CLV2 and lower boundary of the zone of W synthesis was determined by isoline of the corresponding threshold level of substance Y concentration. The model of the “reaction-diffusion” type formalizing the role proteins CLV1/CLV2, CLV3, and WUS can describe the basis of the mechanism underlying regulation of the compartmental structure of the shoot apical meristem and positioning of the organizing center in a certain site of the cell ensemble of such meristem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号