首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Paraoxonase1 (PON1), one of HDL-associated antioxidant proteins, is known to lose its activity in vivo systems under oxidative stress. Here, we examined the effect of various oxidants on lactonase activity of PON1, and tried to protect the lactonase activity from oxidative inactivation. Among the oxidative systems tested, the ascorbate/Cu2+ system was the most potent in inactivating the lactonase activity of purified PON1; in contrast to a limited role of Fe2+, Cu2+ (0.05–1.0 µM) remarkably enhanced the inactivation of PON1 in the presence of ascorbate (0.02–0.1 mM). Moreover, Cu2+ alone inhibited the lactonase activity at concentrations as low as 1 µM. The ascorbate/Cu2+-mediated inactivation of PON1 lactonase activity was prevented by catalase, but not general hydroxyl radical scavengers, suggesting the implication of Cu2+-bound hydroxyl radicals in the oxidative inactivation. Compared to arylesterase activity, lactonase activity appears to be more sensitive to Cu2+-catalyzed oxidation. Separately, ascorbate/Cu2+-mediated inactivation of lactonase activity was prevented by oleic acid as well as phoshatidylcholine. Taken together, our data demonstrate that Cu2+-catalyzed oxidation may be a primary factor to cause the decrease of PON1 lactonase activity under oxidative stress and that lactonase activity of PON1 is most susceptible to ascorbate/Cu2+ among PON1 activities. In addition, we have showed that radical-induced inactivation of lactonase activity is prevented by some lipids.  相似文献   

2.
Paraoxonases PON1 and PON3, which are both associated in serum with HDL, protect the serum lipids from oxidation, probably as a result of their ability to hydrolyze specific oxidized lipids. The activity of HDL-associated PON1 seems to involve an activity (phospholipase A2-like activity, peroxidase-like activity, lactonase activity) which produces LPC. To study the possible role of PON1 in macrophage foam cell formation and atherogenesis we used macrophages from control mice, from PON1 knockout mice, and from PON1 transgenic mice. Furthermore, we analyzed PON1-treated macrophages and PON1-transfected cells to demonstrate the contribution of PON1 to the attenuation of macrophage cholesterol and oxidized lipid accumulation and foam cell formation. PON1 was shown to inhibit cholesterol influx [by reducing the formation of oxidized LDL (Ox-LDL), increasing the breakdown of specific oxidized lipids in Ox-LDL, and decreasing macrophage uptake of Ox-LDL]. PON1 also inhibits cholesterol biosynthesis and stimulates HDL-mediated cholesterol efflux from macrophages. PON2 and PON3 protect against oxidative stress, with PON2 acting mainly at the cellular level. Whereas serum PON1 and PON3 were inactivated under oxidative stress, macrophage PON2 expression and activity were increased under oxidative stress, probably as a compensatory mechanism against oxidative stress. Intervention to increase the paraoxonases (cellular and humoral) by dietary or pharmacological means can reduce macrophage foam cell formation and attenuate atherosclerosis development.  相似文献   

3.
Nguyen SD  Sok DE 《Free radical research》2003,37(12):1319-1330
Paraoxonase1 (PON1), one of antioxidant proteins to protect low density lipoprotein (LDL) from the oxidation, is known to lose its activity in the oxidative environment. Here, we attempted to elucidate the possible mechanisms for the oxidative inactivation of PON1, and to examine the capability of hydroxyl radicals-inactivated PON1 to prevent against LDL oxidation. Of various oxidative systems, the ascorbate/Cu2+ system was the most potent in inactivating the purified PON1 (PON1) as well as HDL-bound PON1 (HDL-PON1). In contrast to a limited inactivation by Fe2+ (2.0 μM), the inclusion of Cu2+ (0.1-1.0 μM) remarkably enhanced the inactivation of PON1 in the presence of ascorbate (0.5 mM). A similar result was also obtained with the inactivation of HDL-PON1. The inactivation of PON1 by ascorbate/Cu2+ was pevented by catalase, but not general hydroxyl radical scavengers, supporting Cu2+-catalyzed oxidative inactivation. In addition, Cu2+ alone inactivated PON1, either soluble or HDL-bound, by different mechanisms, concentration-dependent. Separately, there was a reverse relationship between the inactivation of PON1 and its preventive action against LDL oxidation during Cu2+-induced oxidation of LDL. Noteworthy, ascorbate/Cu2+-inactivated PON1, which was charaterized by the partial loss of histidine residues, expressed a lower protection against Cu2+-induced LDL oxidation, compared to native PON1. Based on these results, it is proposed that metal-catalyzed oxidation may be a primary factor to cause the decrease of HDL-associated PON1 activity under oxidative stress, and radicals-induced inactivation of PON1 may lead to the decrease in its antioxidant action against LDL oxidation.  相似文献   

4.
《Free radical research》2013,47(12):1319-1330
Paraoxonase1 (PON1), one of antioxidant proteins to protect low density lipoprotein (LDL) from the oxidation, is known to lose its activity in the oxidative environment. Here, we attempted to elucidate the possible mechanisms for the oxidative inactivation of PON1, and to examine the capability of hydroxyl radicals-inactivated PON1 to prevent against LDL oxidation. Of various oxidative systems, the ascorbate/Cu2+ system was the most potent in inactivating the purified PON1 (PON1) as well as HDL-bound PON1 (HDL-PON1). In contrast to a limited inactivation by Fe2+ (2.0?μM), the inclusion of Cu2+ (0.1–1.0?μM) remarkably enhanced the inactivation of PON1 in the presence of ascorbate (0.5?mM). A similar result was also obtained with the inactivation of HDL-PON1. The inactivation of PON1 by ascorbate/Cu2+ was pevented by catalase, but not general hydroxyl radical scavengers, supporting Cu2+-catalyzed oxidative inactivation. In addition, Cu2+ alone inactivated PON1, either soluble or HDL-bound, by different mechanisms, concentration-dependent. Separately, there was a reverse relationship between the inactivation of PON1 and its preventive action against LDL oxidation during Cu2+-induced oxidation of LDL. Noteworthy, ascorbate/Cu2+-inactivated PON1, which was charaterized by the partial loss of histidine residues, expressed a lower protection against Cu2+-induced LDL oxidation, compared to native PON1. Based on these results, it is proposed that metal-catalyzed oxidation may be a primary factor to cause the decrease of HDL-associated PON1 activity under oxidative stress, and radicals-induced inactivation of PON1 may lead to the decrease in its antioxidant action against LDL oxidation.  相似文献   

5.
Many proteins, including actin, are targets for S-glutathionylation, the reversible formation of mixed disulphides between protein cysteinyl thiol groups and glutathione (GSH) that can be induced in cells by oxidative stress. Proposed mechanisms of protein S-glutathionylation follow mainly two distinct pathways. One route involves the initial oxidative modification of a reduced protein thiol to an activated protein, which may then react with GSH to the mixed disulphide. The second route involves the oxidative modification of GSH to an activated form such as glutathione disulphide (GSSG), which may then react with a reduced protein thiol, yielding the corresponding protein mixed disulphide. We show here that physiological levels of GSSG induce a little extent of actin S-glutathionylation. Instead, actin with the exposed cysteine thiol activated by diamide or 5,5'-dithiobis(2-nitrobenzoic acid) reacts with physiological levels of GSH, incorporating about 0.7 mol GSH/mol protein. Differently, an extremely high concentration of GSSG induces an increased level of S-glutathionylation that causes a 50% inhibition in actin polymerization not reversed by dithiotreitol. In mammalian cells, GSH is present in millimolar concentrations and is in about 100-fold excess over GSSG. The high concentration of GSSG required for obtaining a significant actin S-glutathionylation as well as attendant irreversible changes in protein functions make unlikely that actin may be S-glutathionylated by a thiol-disulphide exchange mechanism within the cell.  相似文献   

6.
Protein-glutathione mixed disulfide formation was investigated in vitro by exposure of human platelets to the thiol-specific oxidant azodicarboxylic acid-bis-dimethylamide (diamide). We found that diamide causes a decrease in the reduced form of glutathione (GSH), paralleled by an increase in protein-GSH mixed disulfides (S-glutathionylated proteins), which was not accompanied by any significant increase in the basal level of glutathione disulfide (GSSG). The increase in the appearance of S-glutathionylated proteins was inversely correlated with ADP-induced platelet aggregation. Platelet cytoskeleton was analyzed by SDS-PAGE followed by Western immunoblotting with anti-GSH antibody. The main S-glutathionylated cytoskeletal protein proved to be actin, which accounts for 35% of the platelet total protein content. Our results suggest that neither GSSG formation nor a consequent thiol-disulfide exchange mechanism is involved in actin S-glutathionylation of human platelets exposed to diamide. Instead, a mechanism involving the initial oxidative activation of actin thiol groups, which then react with GSH to the protein-GSH mixed disulfides, makes it likely that platelet actin is S-glutathionylated without any significant increase in the GSSG content.  相似文献   

7.
Paraoxonase-1 (PON1) is an HDL-associated enzyme with anti-atherogenic properties. Reduced PON1 activity has previously been observed in Nippostrongylus brasiliensis-infected rats. However, the effect of chronic zoonotic nematode infections on serum PON1 activity has not yet been studied. Therefore, we evaluated the effect of Trichinella spiralis infection on serum PON1 activity, the lipid profile, and oxidative stress in rats. There were significant reductions in serum PON1 activities (Day 2-Week 7 post-infection) in rats infected with T. spiralis, and these reductions were associated with significant increases in the serum levels of triglyceride and LDL/VLDL, as well as a significant reduction in the level of HDL. Moreover, T. spiralis infection was associated with a status of oxidative stress indicated by increased concentrations of superoxide dismutase and malondialdehyde. Given the zoonotic prevalence of T. spiralis and the cardioprotective role of PON1, further mechanistic research in this area is warranted.  相似文献   

8.
Human serum paraoxonase (PON1), an HDL-associated esterase, protects lipoproteins against oxidation, probably by hydrolyzing specific lipid peroxides. As arterial macrophages play a key role in oxidative stress in early atherogenesis, the aim of the present study was to examine the effect of PON1 on macrophage oxidative stress. For this purpose we used mouse arterial and peritoneal macrophages (MPM) that were harvested from two populations of PON1 knockout (KO) mice: one on the genetic background of C57BL/6J (PON1(0)) and the other one on the genetic background of apolipoproteinE KO (PON1(0)/E(0)). Serum and LDL, but not HDL, lipids peroxidation was increased in PON1(0), compared to C57BL/6J mice, by 84% and by 220%, respectively. Increased oxidative stress was shown in peritoneal and in arterial macrophages derived from either PON1(0) or PON1(0)/E(0) mice, compared to their appropriate controls. Macrophage oxidative stress was expressed by increased lipid peroxides content in MPM from PON1(0) and from PON1(0)/E(0) mice by 48% and by 80%, respectively, and by decreased reduced glutathione (GSH) content, compared to the appropriate controls. Furthermore, increased capacity of MPM from PON1(0) and PON1(0)/E(0) mice to oxidize LDL (by 40% and by 19%, respectively) and to release superoxide anions was observed. In accordance with these results, PON1(0) mice MPM exhibited 130% increased translocation of the cytosolic p47phox component of NADPH-oxidase to the macrophage plasma membrane, suggesting increased activation of macrophage NADPH-oxidase in PON1(0) mice, compared to control mice MPM. The increase in oxidative stress in PON1-deficient mice was observed despite the presence of the two other members of the PON gene family. PON2 and PON3 activities and mRNA expression were both found to be present in PON1-deficient mice MPM. Upon incubation of PON1(0)/E(0) derived macrophages with human PON1 (7.5 arylesterase units/ml), cellular peroxides content was decreased by 18%, macrophage superoxide anion release was decreased by 33%, and macrophage-mediated oxidation of LDL was reduced by 22%. Finally, a 42% increase in the atherosclerotic lesion area was observed in PON1(0)/E(0) mice, in comparison to E(0) mice under regular chow diet. We thus concluded that PON1 can directly reduce oxidative stress in macrophages and in serum, and that PON1-deficiency results in increased oxidative stress not only in serum, but also in macrophages, a phenomenon that can contribute to the accelerated atherosclerosis shown in PON1-deficient mice.  相似文献   

9.
Previous results have indicated that the generation of ceramide by hydrolysis of sphingomyelin by magnesium-dependent neutral sphingomyelinase 1 (NSM1) is reversibly inhibited by hydrogen peroxide (H2O2) and oxidized glutathione (GSSG). This redox-dependent reversible regulation of NSM1 activity has been shown to involve the reversible formation and breakage of disulfide bonds. In this paper, we show that peroxynitrite, a nitric oxide-derived oxidant generated by SIN1, inactivates dose-dependently the NSM1 activity in an irreversible manner. In addition, we show that, in contrast to the reversible inhibition of NSM1 by H2O2 or GSSG which involves the formation of disulfide bonds, irreversible inactivation of this enzyme by peroxynitrite generated from SIN1 is likely due to definitive oxidative thiol modification. These results suggest that depending on the nature of the oxidative stress, the enzymatic activity of NSM1 could be reversibly or irreversibly inactivated.  相似文献   

10.
Expression of macrophage paraoxonase 2 (PON2), a cellular lactonase with anti-oxidant and anti-atherogenic properties, was shown to be upregulated under high oxidative stress. The aim of the present study was to analyze the relationship between the extent of cellular oxidative stress in J774A.1 macrophage and PON2 lactonase activity under various levels of oxidation, obtained by cell incubation with either anti-oxidants or oxidants. PON2 activity exhibited a U-shape response curve. In the oxidative stress range below that of control untreated cells, PON2 activity decreased upon increasing macrophage oxidative state, whereas in the range over that of control untreated cells, PON2 activity increased. The biphasic effect of oxidative stress on macrophage PON2 activity could be related to PON2 inactivation (decreased enzymatic activity) under oxidative stress induction at its low range, whereas at high range of oxidative stress, macrophage anti-oxidant compensatory mechanism up-regulates PON2 (increased protein expression), in order to cope with oxidative burden.  相似文献   

11.
Plant protein tyrosine phosphatases (PTPs) are important in regulating cellular responses to redox change through their reversible inactivation under oxidative conditions. Studies on the soybean (Glycine max) GmPTP have shown that, compared with its mammalian counterparts, the plant enzyme is relatively insensitive to inactivation by H2O2 but hypersensitive (k(inact) = 559 M(-1) s(-1)) to S-glutathionylation (thiolation) promoted by the presence of oxidized glutathione (GSSG). Through a combination of chemical and mutational modification studies, three of the seven cysteine residues of GmPTP have been identified by mass spectrometry as being able to inactivate the enzyme when thiolated by GSSG or alkylated with iodoacetamide. Conserved Cys 266 was shown to be essential for catalysis but surprisingly resistant to S-modification, whereas the regulatory Cys 78 and Cys 176 were readily thiolated and/or alkylated. Mutagenesis of these cysteines showed that all three residues were in proximity of each other, regulating each's reactivity to S-modifying agents. Through a combination of protein modification and kinetic experiments, we conclude that the inactivation of GmPTP by GSSG is regulated at two levels. Cys 176 appears to be required to promote the formation of the reduced form of Cys 266, which is otherwise unreactive. When thiolated, Cys 176 immediately inactivates the enzyme, and this is followed by the thiolation of Cys 78, which undergoes a slow disulfide exchange with Cys 266 giving rise to a Cys 78-Cys 266 disulfide. We speculate that this two-tiered protection is required for regulation of GmPTP under highly oxidizing conditions.  相似文献   

12.
Protein glutathionylation in response to oxidative stress can affect both the stability and activity of target proteins. Mitochondrial thymidine kinase 2 (TK2) is a key enzyme in mitochondrial DNA precursor synthesis. Using an antibody specific for glutathione (GSH), S-glutathionylated TK2 was detected after the addition of glutathione disulfide (GSSG) but not GSH. This was reversed by the addition of dithiothreitol, suggesting that S-glutathionylation of TK2 is reversible. Site-directed mutagenesis of the cysteine residues and subsequent analysis of mutant enzymes demonstrated that Cys-189 and Cys-264 were specifically glutathionylated by GSSG. These cysteine residues do not appear to be part of the active site, as demonstrated by kinetic studies of the mutant enzymes. Treatment of isolated rat mitochondria with hydrogen peroxide resulted in S-glutathionylation of added recombinant TK2. Treatment of intact cells with hydrogen peroxide led to reduction of mitochondrial TK2 activity and protein levels, as well as S-glutathionylation of TK2. Furthermore, the addition of S-glutathionylated recombinant TK2 to mitochondria isolated from hydrogen peroxide-treated cells led to degradation of the S-glutathionylated TK2, which was not observed with unmodified TK2. S-Glutathionylation on Cys-189 was responsible for the observed selective degradation of TK2 in mitochondria. These results strongly suggest that oxidative damage-induced S-glutathionylation and degradation of TK2 have significant impact on mitochondrial DNA precursor synthesis.  相似文献   

13.
The redox poise of the mitochondrial glutathione pool is central in the response of mitochondria to oxidative damage and redox signaling, but the mechanisms are uncertain. One possibility is that the oxidation of glutathione (GSH) to glutathione disulfide (GSSG) and the consequent change in the GSH/GSSG ratio causes protein thiols to change their redox state, enabling protein function to respond reversibly to redox signals and oxidative damage. However, little is known about the interplay between the mitochondrial glutathione pool and protein thiols. Therefore we investigated how physiological GSH/GSSG ratios affected the redox state of mitochondrial membrane protein thiols. Exposure to oxidized GSH/GSSG ratios led to the reversible oxidation of reactive protein thiols by thiol-disulfide exchange, the extent of which was dependent on the GSH/GSSG ratio. There was an initial rapid phase of protein thiol oxidation, followed by gradual oxidation over 30 min. A large number of mitochondrial proteins contain reactive thiols and most of these formed intraprotein disulfides upon oxidation by GSSG; however, a small number formed persistent mixed disulfides with glutathione. Both protein disulfide formation and glutathionylation were catalyzed by the mitochondrial thiol transferase glutaredoxin 2 (Grx2), as were protein deglutathionylation and the reduction of protein disulfides by GSH. Complex I was the most prominent protein that was persistently glutathionylated by GSSG in the presence of Grx2. Maintenance of complex I with an oxidized GSH/GSSG ratio led to a dramatic loss of activity, suggesting that oxidation of the mitochondrial glutathione pool may contribute to the selective complex I inactivation seen in Parkinson's disease. Most significantly, Grx2 catalyzed reversible protein glutathionylation/deglutathionylation over a wide range of GSH/GSSG ratios, from the reduced levels accessible under redox signaling to oxidized ratios only found under severe oxidative stress. Our findings indicate that Grx2 plays a central role in the response of mitochondria to both redox signals and oxidative stress by facilitating the interplay between the mitochondrial glutathione pool and protein thiols.  相似文献   

14.
Paraoxonase1 (PON1), one of HDL-asssociated antioxidant proteins, is known to be sensitive to oxidative stress. Here, the effect of endogenous reducing compounds on Cu2+-mediated inactivation of PON1 was examined. Cu2+-mediated inactivation of PON1 was enhanced remarkably by catecholamines, but not by uric acid or homocysteine. Furthermore, catecholamines such as 3,4-dihydroxyphenylalanine (DOPA), dopamine or norepinephrine were more effective than caffeic acid or pyrocatechol in promoting Cu2+-mediated inactivation of PON1, suggesting the importance of dihydroxybenzene group as well as amino group. DOPA at relatively low concentrations showed a concentration-dependent inactivation of PON1 in a concert with Cu2+, but not Fe2+. The DOPA/Cu2+-induced inactivation of PON1 was prevented by catalase, but not hydroxyl radical scavengers, consistent with Cu2+-catalyzed oxidation. A similar result was also observed when HDL-associated PON1 (HDL-PON1) was exposed to DOPA/Cu2+. Separately, it was found that DOPA at low concentrations (1-6 μM) acted as a pro-oxidant by enhancing Cu2+-induced oxidation of HDL, while it exhibited an antioxidant action at ≥10 μM. In addition, Cu2+-oxidized HDL lost the antioxidant action against LDL oxidation. Meanwhile, the role of DOPA/Cu2+-oxidized HDL differed according to DOPA concentration; HDL oxidized with Cu2+ in the presence of DOPA (60 or 120 μM) maintained antioxidant activity of native HDL, in contrast to an adverse effect of DOPA at 3 or 6 μM. These data indicate that DOPA at micromolar level may act as a pro-oxidant in Cu2+-induced inactivation of PON1 as well as oxidation of HDL. Also, it is proposed that the oxidative inactivation of HDL-PON1 is independent of HDL oxidation.  相似文献   

15.
Low-density lipoproteins (LDLs), when modified by free radicals derived from artery wall cells, induce atherosclerosis. In contrast to oxidized LDL (ox-LDL), high-density lipoproteins (HDLs) are able to prevent atherosclerosis through a protein with antioxidant properties, paraoxonase 1 (PON1). The purpose of this study was to explore the association between the activity of HDL-associated PON1 and circulating ox-LDL as well as to investigate the relationship between ox-LDL and parameters of lipid profile in thirty Slovaks aged 21-73 years because recent studies have presented controversial results concerning PON1 and its role in LDL oxidation. For determination of circulating ox-LDL sandwich ELISA was used and other lipid parameters were determined by routine laboratory analyses. PON1 activities were assayed by two synthetic substrates - paraoxon and phenyl acetate. Lipid peroxides were determined spectrophotometrically. Of the lipid parameters examined, ox-LDL level correlated positively with total (P < 0.0001) and LDL-cholesterol (P < 0.001). Triacylglycerols (TAG) (P < 0.001), lipid peroxides (P < 0.01) and atherogenic index (AI = total cholesterol/HDL) (P < 0.0001) were also strongly correlated with ox-LDL. No inverse relationships were observed between ox-LDL and HDL-cholesterol or arylesterase/paraoxonase activities of PON1. Furthermore, it was found that ox-LDL (P < 0.01) and lipid peroxides (P < 0.05) were significantly higher in men than in women. PON1 arylesterase activity was marginally affected by sex. The results of this study suggest that the anti-atherogenic properties of HDLs are not directly related to their total concentration and that PON1 activity determined towards synthetic compounds (paraoxon and phenyl acetate) reflects no association with markers of oxidative stress. Furthermore, it follows from our results that men are more susceptible to developing atherosclerosis compared to women.  相似文献   

16.
Brain and liver mitochondria isolated by a discontinuous Percoll gradient show an oxidized redox environment, which is reflected by low GSH levels and high GSSG levels and significant glutathionylation of mitochondrial proteins as well as by low NAD(P)H/NAD(P) values. The redox potential of brain mitochondria isolated by a discontinuous Percoll gradient method was calculated to be -171 mV based on GSH and GSSG concentrations. Immunoblotting and LC/MS/MS analysis revealed that succinyl-CoA transferase and ATP synthase (F(1) complex, α-subunit) were extensively glutathionylated; S-glutathionylation of these proteins resulted in a substantial decrease of activity. Supplementation of mitochondria with complex I or complex II respiratory substrates (malate/glutamate or succinate, respectively) increased NADH and NADPH levels, resulting in the restoration of GSH levels through reduction of GSSG and deglutathionylation of mitochondrial proteins. Under these conditions, the redox potential of brain mitochondria was calculated to be -291 mV. Supplementation of mitochondria with respiratory substrates prevented GSSG formation and, consequently, ATP synthase glutathionylation in response to H(2)O(2) challenges. ATP synthase appears to be the major mitochondrial protein that becomes glutathionylated under oxidative stress conditions. Glutathionylation of mitochondrial proteins is a major consequence of oxidative stress, and respiratory substrates are key regulators of mitochondrial redox status (as reflected by thiol/disulfide exchange) by maintaining mitochondrial NADPH levels.  相似文献   

17.
Glutaredoxins are small proteins with a conserved active site (-CXX(C/S)-) and thioredoxin fold. These thiol disulfide oxidoreductases catalyze disulfide reductions, preferring GSH-mixed disulfides as substrates. We have developed a new real-time fluorescence-based method for measuring the deglutathionylation activity of glutaredoxins using a glutathionylated peptide as a substrate. Mass spectrometric analysis showed that the only intermediate in the reaction is the glutaredoxin-GSH mixed disulfide. This specificity was solely dependent on the unusual gamma-linkage present in glutathione. The deglutathionylation activity of both wild-type Escherichia coli glutaredoxin and the C14S mutant was competitively inhibited by oxidized glutathione, with K(i) values similar to the K(m) values for the glutathionylated peptide substrate, implying that glutaredoxin primarily recognizes the substrate via the glutathione moiety. In addition, wild-type glutaredoxin showed a sigmoidal dependence on GSH concentrations, the activity being significantly decreased at low GSH concentrations. Thus, under oxidative stress conditions, where the ratio of GSH/GSSG is decreased, the activity of glutaredoxin is dramatically reduced, and it will only have significant deglutathionylation activity once the oxidative stress has been removed. Different members of the protein disulfide isomerases (PDI) family showed lower activity levels when compared with glutaredoxins; however, their deglutathionylation activities were comparable with their oxidase activities. Furthermore, in contrast to the glutaredoxin-GSH mixed disulfide intermediate, the only intermediate in the PDI-catalyzed reaction was PDI peptide mixed disulfide.  相似文献   

18.
Protein S-thiolation or protein-glutathione mixed disulfide (PSSG) occurs when cells are exposed to oxidative stress, and has been implicated in several cellular functions. The S-thiolation of hemoglobin as well as other abundant proteins is proposed to participate as a redox buffer, being part of the antioxidant protection system of the cell during the oxidative challenge. We studied the oxidative stress caused by peroxides (H(2)O(2), cumene and tert-butyl hydroperoxide) on chicken blood by measuring the thiol/disulfide status. Chicken blood under peroxide treatment showed a time- and concentration-dependent increase in glutathione disulfide (GSSG) and PSSG. GSSG peaked immediately after treatment (1 min), while PSSG increased progressively over time, showing a maximum after about 30 min. The system recovered after 140 min of incubation, with GSSG and PSSG then barely reaching control values. The S-thiolation of hemoglobin was monitored under nondenaturing PAGE, and the fraction of S-thiolated hemoglobin, or Hb A1, rose in a dose-dependent fashion and was proportional to total S-thiolation, measured as PSSG. This significant correlation indicates that hemoglobin is the major S-thiolated protein in chicken erythrocytes treated with peroxides. The present work shows the behavior of chicken blood under peroxide treatment; it anticipated that chicken hemoglobin thiol groups can actively participate in the redox processes of erythrocytes exposed to oxidative stress, and that hemoglobin is the major S-thiolated protein. This further corroborates the hypothesis that abundant proteins, such as hemoglobin, may take part in the cellular antioxidant defense system.  相似文献   

19.
Paraoxonase1 (PON1), one of HDL-asssociated antioxidant proteins, is known to be sensitive to oxidative stress. Here, the effect of endogenous reducing compounds on Cu2+-mediated inactivation of PON1 was examined. Cu2+-mediated inactivation of PON1 was enhanced remarkably by catecholamines, but not by uric acid or homocysteine. Furthermore, catecholamines such as 3,4-dihydroxyphenylalanine (DOPA), dopamine or norepinephrine were more effective than caffeic acid or pyrocatechol in promoting Cu2+-mediated inactivation of PON1, suggesting the importance of dihydroxybenzene group as well as amino group. DOPA at relatively low concentrations showed a concentration-dependent inactivation of PON1 in a concert with Cu2+, but not Fe2+. The DOPA/Cu2+-induced inactivation of PON1 was prevented by catalase, but not hydroxyl radical scavengers, consistent with Cu2+-catalyzed oxidation. A similar result was also observed when HDL-associated PON1 (HDL-PON1) was exposed to DOPA/Cu2+. Separately, it was found that DOPA at low concentrations (1-6 μM) acted as a pro-oxidant by enhancing Cu2+-induced oxidation of HDL, while it exhibited an antioxidant action at ≥10 μM. In addition, Cu2+-oxidized HDL lost the antioxidant action against LDL oxidation. Meanwhile, the role of DOPA/Cu2+-oxidized HDL differed according to DOPA concentration; HDL oxidized with Cu2+ in the presence of DOPA (60 or 120 μM) maintained antioxidant activity of native HDL, in contrast to an adverse effect of DOPA at 3 or 6 μM. These data indicate that DOPA at micromolar level may act as a pro-oxidant in Cu2+-induced inactivation of PON1 as well as oxidation of HDL. Also, it is proposed that the oxidative inactivation of HDL-PON1 is independent of HDL oxidation.  相似文献   

20.
Recent studies implied that low-density lipoprotein (LDL) modified predominantly by oxidation or glycation, significantly contributes to the formation of atherosclerotic lesions. In contrast to oxidized LDL (ox-LDL), high-density lipoprotein (HDL) is able to prevent accumulation of ox-LDL in arterial walls. This antiatherogenic property of HDL is attributed in part to several enzymes associated with the lipoprotein, including HDL-associated paraoxonase 1 (PON1). In this study we analyzed PON1 arylesterase/paraoxonase activities in relation to serum lipid profile, gender and age in thirty clinically healthy Slovak volunteers. Our results showed that PON1 arylesterase and paraoxonase activities were lower in citrated plasma than in serum by 16.6% and 27.3%, respectively. Among serum lipoproteins, only HDL-cholesterol level showed significant positive correlation with PON1 arylesterase activity (p = 0.042). Likewise, we found a significant relationship between atherogenic index (AI = total cholesterol/HDL-cholesterol) and PON1 arylesterase activity (p = 0.023). No significant correlation could be demonstrated between PON1 paraoxonase activity and serum lipid profile, age or gender. Furthermore, it was found that PON1 paraoxonase/arylesterase activities were higher in women compared with both investigated activities in men, but these differences were not statistically significant. These results confirmed a positive correlation between HDL-cholesterol and PON1 arylesterase activity. Moreover, it was found out that PON1 paraoxonase activity is not influenced either by gender or by age. PON1 arylesterase activity was however affected by gender to a limited extent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号