首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tendon and corneal decorins are differently iduronated dermatan sulphate/proteoglycan (DS/PG) and the biochemical parameter that differentiates type I collagens is the hydroxylysine glycoside content. We have examined the effect of tendon and corneal decorins on the individual phases (tlag, dA/dt) of differently glycosylated type I collagens fibril formation, at molar ratios PG:collagen monomer ranging from 0.15 : 1 to 0.45 : 1. The results obtained indicate that decorins exert a different effect on the individual phases of fibril formation, correlated to the degree of glycosylation of collagen: at the same PG:collagen ratio the fibril formation of highly glycosylated corneal collagen is more efficiently inhibited than that of the poorly glycosylated one (tendon). Moreover tendon and corneal decorins exert a higher control on the fibrillogenesis of homologous collagen with respect to the heterologous one. These data suggest a possible tissue-specificity of the interaction decorin/type I collagen correlated to the structure of the PG and collagen present in extracellular matrices. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

2.
Deposition of type X collagen in the cartilage extracellular matrix   总被引:1,自引:0,他引:1  
In cultured chick embryo chondrocytes, type X collagen is preferentially deposited in the extracellular matrix, the ratio between type II and type X collagen being about 5 times higher in the culture medium than in the cell layer. When the newly synthesized collagens deposited in slices from the epiphyseal cartilage of 17-day-old embryo tibiae were isolated, type X collagen was always the major species. In agreement with this result the mRNA for type X collagen was the predominant mRNA species purified from the same tissue. When the total collagen (unlabeled) deposited in the epiphyseal cartilage was analyzed, it was observed that type X collagen represented only 1/15 of the type II collagen recovered in the same preparation. The possible explanations for these differences are discussed.  相似文献   

3.
Type I collagen is a fibril‐forming protein largely responsible for the mechanical stability of body tissues. The tissue level properties of collagen have been studied for decades, and an increasing number of studies have been performed at the fibril scale. However, the mechanical properties of collagen at the molecular scale are not well established. In the study presented herein, the persistence length of pepsin digested bovine type I collagen is extracted from the conformations assumed when deposited from solution onto two‐dimensional surfaces. This persistence length is a measure of the flexibility of the molecule. Comparison of the results for molecules deposited from different solvents allows for the study of the effect of the solutions on the flexibility of the molecule and provides insight into the molecule's behavior in situ. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 329–335, 2014.  相似文献   

4.
Chick embryo sternal chondrocytes from the caudal and cephalic regions were cultured within type I collagen gels and type I collagen/proteoglycan aggregate composite gels in normal serum. Caudal region chondrocytes were also cultured within type I collagen gels in the presence of fibronectindepleted serum. There was a marked stimulation of type X collagen synthesis by the caudal region chondrocytes after 9 days in the presence of fibronectin-depleted serum and after 14 days in the presence of proteoglycan aggregate. These results provide evidence for the ability of chondrocytes from a zone of permanent cartilage to synthesise type X collagen and for the involvement of extracellular matrix components in the control of type X collagen gene expression.  相似文献   

5.
Primary cultured rat hepatocytes in a membrane-supported collagen sandwich maintained their normal cell morphology and high level of albumin secretion for over 56 days. It was found that the existence of an upper layer of collagen gel is crucial for long-term culture and that the transference of cellular nutrients between the culture media and hepatocytes from both the upper and the lower sides of gel layers promotes albumin secretion. These facts suggest that the membrane-supported collagen sandwich mimics well thein vivo environment of hepatocytes. This method has great potential for the long-term culture of primary cells.  相似文献   

6.
Ethyl-3,4-dihydroxybenzoate (EDHB), a specific inhibitor of collagen synthesis, was used to study the role of collagen in the differentiation of bovine intramuscular preadipocytes (BIP). Triglyceride (TG) accumulation levels of BIP cells were dose-dependently inhibited by EDHB and were reduced to 50 % at a 0.1 mM concentration. EDHB addition prevented the accretion of collagens (types I-VI) on the cell surface, which generally increases during adipose conversion. Western blotting and immunofluorescence studies showed in detail that triple-helical conformation of procollagen molecules was drastically interrupted by EDHB, and as a result, their matrix assembly was not performed in the extracellular space of adipocytes. Particularly, the development of collagen types IV, V and VI during differentiation was severely damaged. When exogenous collagens were supplied to make up for the lack of endogenous products, cultured EDHB-treated cells on type V and VI collagen-coated dishes were the only ones among six collagens to accumulate more TG, although their TG content did not reach that of normal adipocytes. This result implies the importance and the active role of collagens V and VI for adipogenesis. However, these findings also indicate that collagen newly synthesized and organized by the adipocyte itself during differentiation is still necessary for the growth of adipose tissue.  相似文献   

7.
The collagen model peptide with sequence (Pro-Hyp-Gly)4-Pro-Gly-(Pro-Hyp-Gly)5 contains a central Gly-Pro-Gly interruption in the consensus collagen sequence. Its high-resolution crystal structure defines the molecular consequences of such an interruption for the collagen triple-helical conformation, and provides insight into possible structural and biological roles of similar interruptions in the -Gly-X-Y- repeating pattern found in non-fibrillar collagens. The peptide (denoted as the Hyp minus peptide or Hyp-) forms a rod-like triple helix structure without any bend or kink, and crystallizes in a quasi-hexagonal lattice. The two Pro-Hyp-Gly zones adopt the typical triple-helical collagen conformation with standard Rich and Crick II hydrogen bonding topology. Notably, the central zone containing the Gly-Pro-Gly interruption deviates from the standard structure in terms of hydrogen bonding topology, torsion angles, helical, and superhelical parameters. These deviations are highly localized, such that the standard features are regained within one to two residues on either side. Conformational variations and high temperature factors seen for the six chains of the asymmetric unit in the zone around the interruption point to the presence of a local region of considerable plasticity and flexibility embedded within two highly rigid and ordered standard triple-helical segments. The structure suggests a role for Gly-X-Gly interruptions as defining regions of flexibility and molecular recognition in the otherwise relatively uniform repeating collagen conformation.  相似文献   

8.
To examine mechanisms by which reduced type V collagen causes weakened connective tissues in the Ehlers-Danlos syndrome (EDS), we examined matrix deposition and collagen fibril morphology in long-term dermal fibroblast cultures. EDS cells with COL5A1 haplo-insufficiency deposited less than one-half of hydroxyproline as collagen compared to control fibroblasts, though total collagen synthesis rates are near-normal because type V collagen represents a small fraction of collagen synthesized. Cells from patients with osteogenesis imperfecta (OI) and haplo-insufficiency for proalpha1(I) chains of type I collagen also incorporated about one-half the collagen as controls, but this amount was proportional to their reduced rates of total collagen synthesis. Collagen fibril diameter was inversely proportional to type V/type I collagen ratios (EDS > control > OI). However, a reduction of type V collagen, in the EDS derived cells, was associated with the assembly of significantly fewer fibrils compared to control and OI cells. These data indicate that in cell culture, the quantity of collagen fibrils deposited in matrix is highly sensitive to reduction in type V collagen, far out of proportion to type V collagen's contribution to collagen mass.  相似文献   

9.
A triple-helical conformation and stability at physiological temperature are critical for the mechanical and biological functions of the fibril-forming collagens. Here, we characterized the role of consecutive domains of collagen II in stabilizing the triple helix. Analysis of melting temperatures of genetically engineered collagen-like proteins consisting of tandem repeats of the D1, D2, D3 or D4 collagen II periods revealed the presence of a gradient of thermostability along the collagen molecule with thermolabile N-terminal domains and thermostable C-terminal domains. These results imply a multi-domain character of the collagen triple helix. Assays of thermostabilities of the Arg75Cys and Arg789Cys collagen II mutants suggest that, in contrast to the thermostable domains, the thermolabile domains are able to accommodate amino acid substitutions without altering the thermostability of the entire collagen molecule.  相似文献   

10.
Nothing in biology stimulates the imagination like the development of a single fertilized egg into a newborn child. Consequently, a major focus of biomedical research is aimed at understanding cell differentiation, proliferation, and specialization during child health and human development. However, the fact that the increase in size and shape of the growing embryo has as much to do with the extracellular matrix (ECM) as with the cells themselves, is largely overlooked. Cells in developing tissues are surrounded by a fiber-composite ECM that transmits mechanical stimuli, maintains the shape of developing tissues, and functions as a scaffold for cell migration and attachment. The major structural element of the ECM is the collagen fibril. The fibrils, which are indeterminate in length, are arranged in different tissues in exquisite supramolecular architectures, including parallel bundles, orthogonal lamellae, and concentric weaves. This article reviews our current understanding of the synthesis and assembly of collagen fibrils, and discusses challenging questions about how cells assemble an organized ECM during embryogenesis.  相似文献   

11.
The dermal compartment of skin is primarily composed of collagen‐rich extracellular matrix (ECM), which is produced by dermal fibroblasts. In Young skin, fibroblasts attach to the ECM through integrins. During ageing, fragmentation of the dermal ECM limits fibroblast attachment. This reduced attachment is associated with decreased collagen production, a major cause of skin thinning and fragility, in the elderly. Fibroblast attachment promotes assembly of the cellular actin cytoskeleton, which generates mechanical forces needed for structural support. The mechanism(s) linking reduced assembly of the actin cytoskeleton to decreased collagen production remains unclear. Here, we report that disassembly of the actin cytoskeleton results in impairment of TGF‐β pathway, which controls collagen production, in dermal fibroblasts. Cytoskeleton disassembly rapidly down‐regulates TGF‐β type II receptor (TβRII) levels. This down‐regulation leads to reduced activation of downstream effectors Smad2/Smad3 and CCN2, resulting in decreased collagen production. These responses are fully reversible; restoration of actin cytoskeleton assembly up‐regulates TβRII, Smad2/Smad3, CCN2 and collagen expression. Finally, actin cytoskeleton‐dependent reduction of TβRII is mediated by induction of microRNA 21, a potent inhibitor of TβRII protein expression. Our findings reveal a novel mechanism that links actin cytoskeleton assembly and collagen expression in dermal fibroblasts. This mechanism likely contributes to loss of TβRII and collagen production, which are observed in aged human skin.  相似文献   

12.
Collagen, the most abundant protein in vertebrates, is a useful biomaterial in pharmaceutical and medical industries. So far, most collagen has been extracted from animals and cadavers. Herein, we suggest human adipose tissue, which is routinely abandoned after liposuction, as a plentiful source of human collagen. In this study, human collagen was obtained from adipose tissue through two successive major steps: (i) extraction of the extracellular matrix (ECM) by pulverization, centrifugation, alkaline, and alcohol treatment; (ii) isolation of collagen from ECM by pepsin treatment in dilute acetic acid. The purified human adipose‐derived collagen was characterized by Fourier transform infrared spectroscopy, polyacrylamide gel electrophoresis, amino acid analysis, and circular dichroism spectroscopy. The extracted collagen showed a typical triple helix structure, good thermal stability due to abundant imino acids, and high solubility at acidic pH. The collagen greatly facilitated the adhesion and proliferation of human adipose‐derived stem cells and normal human dermal fibroblasts on polystyrene plates. These results suggest that human adipose tissue obtained by liposuction can provide human collagen for use in cosmetics, pharmaceutics, and medicine. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 28: 973–980, 2012  相似文献   

13.
Non-enzymatic glycation of type I collagen occurs in aging and diabetes, and may affect collagen solubility, charge, polymerization, and intermolecular interactions. Proteoglycans(1) (PGs) bind type I collagen and are proposed to regulate fibril assembly, function, and cell-collagen interactions. Moreover, on the collagen fibril a keratan sulfate (KS) PG binding region overlaps with preferred collagen glycation sites. Thus, we examined the effect of collagen modified by simple glycation on PG-collagen interactions. By affinity coelectrophoresis (ACE), we found reduced affinities of heparin and KSPGs for glycated but not normal collagen, whereas the dermatan sulfate (DS)PGs decorin and biglycan bound similarly to both, and that the affinity of heparin for normal collagen decreased with increasing pH. Circular dichroism (CD) spectroscopy revealed normal and glycated collagens to assume triple helical conformations, but heparin addition caused precipitation and decreased triple helical content-effects that were more marked with glycated collagen. A spectrophotometric assay revealed slower polymerization of glycated collagen. However, ultrastructural analyses indicated that fibrils assembled from normal and glycated collagen exhibited normal periodicity, and had similar structures and comparable diameter distributions. B-cells expressing the cell surface heparan sulfate PG syndecan-1 adhered well to normal but not glycated collagen, and endothelial cell migration was delayed on glycated collagen. We speculate that glycation diminishes the electrostatic interactions between type I collagen and PGs, and may interfere with core protein-collagen associations for KSPGs but not DSPGs. Therefore in vivo, collagen glycation may weaken PG-collagen interactions, thereby disrupting matrix integrity and cell-collagen interactions, adhesion, and migration.  相似文献   

14.
15.
Diverse biological functions of extracellular collagen processing enzymes   总被引:3,自引:0,他引:3  
Collagens are abundant proteins in higher organisms, and are formed by a complex biosynthetic pathway involving intracellular and extracellular post-translational modifications. Starting from simple soluble precursors, this interesting pathway produces insoluble functional fibrillar and non-fibrillar elements of the extracellular matrix. The present review highlights recent progress and new insights into biological regulation of extracellular procollagen processing, and some novel functions of byproducts of these extracellular enzymatic transformations. These findings underscore the notion that released propeptides and other proteolytic products of extracellular matrix proteins have important biological functions, and that structural proteins are multifunctional. An emerging concept is that a dynamic interplay exists between extracellular products and byproducts with cells that helps to maintain normal cellular phenotypes and tissue integrity.  相似文献   

16.
Summary In the process of wound healing keratinocytes and fibroblasts play an important role, keratinocytes in the re-epithelization process and fibroblasts in the process of wound contraction. We have studied the role of human keratinocytes and fibroblasts in the rearrangement of collagen in a collagen lattice model system. Our results revealed that keratinocytes as well as fibroblasts rearrange the collagen lattice; this occurs in a cell number and collagen concentration dependent manner. The optimal gel contraction is obtained in the presence of keratinocytes on the top of and of fibroblasts in the collagen lattice, the situation most closely approaching the in vivo situation. Between the two types of cells, differences in morphologic behavior were observed: when incorporated into the gel the keratinocytes retained their spherical shape throughout the whole culture period, but fibroblasts became elongated and formed extensions. Our data suggest that not only fibroblasts but also keratinocytes may be involved in the process of wound contraction. This work was supported by the Koningin Wilhelmina Fonds (Netherlands Cancer Foundation, grant 84-10).  相似文献   

17.
Arginase from rat fibrosarcoma was purified about 1900-fold and its properties were compared with those of the enzyme from liver and kidney. Arginase from fibrosarcoma was a neutral protein of molecular weight 120,000 with a Km value of 11 mM for arginine. The activation energy was 7.2 kcal/mol and the pH optimum was 10. The fibrosarcoma enzyme was immunologically different from that of the liver. The arginase from fibrosarcoma closely resembled the arginase from the kidney in its electrophoretic, kinetic and immunological properties.  相似文献   

18.
Type V collagen (Col V) molecule, a minor component of kidney connective tissues, was found in adult cornea, and has been considered as a regulatory fibril-forming collagen that emerges into type I collagen to trigger the initiation of Col I fiber assembly. Col V was also found in injured, wound healing tissues or placenta, and was considered as a dysfunctional extracellular matrix (ECM). Reconstituted Col V fibril was characterized as an ECM to detach cells in vitro, and our previous study showed that the reconstituted Col V fibril facilitated the migration of glomerular endothelial cells and induced ECM remodeling, whereas Col V molecules stabilized cells. These facts suggest that not only the structure but also the function of Col V fibril are different from Col V molecule. Recently, Col V molecule has been reported existing in various developing tissues such as bone and lung, but Col V fibril has not been reported yet. In this study, we firstly explored the existence of Col V fibril in metanephroi, and found it distributed in the immature kidney tissues whereas disappeared when the tissues reached mature. It is likely that Col V fibril may form a prototype of pericellular microenvironment and the transient existence of Col V fibril may play a role as the pioneering ECM during metanephric tissue morphogenesis.  相似文献   

19.
During adipogenic differentiation human mesenchymal stem cells (hMSC) produce collagen type IV. In immunofluorescence staining differentiating hMSCs started to express collagen type IV when Oil Red O-positive fat droplets appeared intracellularly. Quantitative real time-polymerase chain reaction confirmed progressive increase of collagen type IV α1 and α2 mRNA levels over time, 18.6- and 12.2-fold by day 28, respectively, whereas the copy numbers of α3-α6 mRNAs remained rather stable and low. Type IV collagen was in confocal laser scanning microscopy seen around adipocytes, where also laminins and nidogen were found, suggesting pericellular deposition of all key components of the fully developed basement membrane. Immunofluorescence staining of matrix metalloproteinase-2 (MMP-2, 72 kD type IV collagenase, gelatinase A) and MMP-9 (92 kD type IV collagenase, gelatinase B) disclosed only faint staining of MSCs, but MMP-9 was strongly induced during adipogenesis, whereas MSC supernatants disclosed in zymography pro-MMP-2 and faint pro-MMP-9 bands, which increased over time, with partial conversion of pro-MMP-2 to its active 62 kD form. Differentiation was associated with increasing membrane type 1-MMP/MMP-14 and tissue inhibitor of metalloproteinase-2 (TIMP-2) staining, which may enable participation of type IV collagenases in basement membrane remodelling via ternary MT1-MMP/TIMP-2/MMP-2 or -9 complexes, focalizing the fully active enzyme to the cell surface. MMP-9, which increased more in immunofluorescence staining, was perhaps preferentially bound to cell surface and/or remodelling adipocyte basement membrane. These results suggest that upon MSC-adipocyte differentiation collagen type IV synthesis and remodelling become necessary when intracellular accumulation of fat necessitates a dynamically supporting and instructive, partly denatured adipogenic pericellular type IV collagen scaffold.  相似文献   

20.
Type I collagen is an essential extracellular protein that plays an important structural role in tissues that require high tensile strength. However, owing to the molecule’s size, to date no experimental structural data are available for the Homo sapiens species. Therefore, there is a real need to develop a reliable homology model and a method to study the packing of the collagen molecules within the fibril. Through the use of the homology model and implementation of a novel simulation technique, we have ascertained the orientations of the collagen molecules within a fibril, which is currently below the resolution limit of experimental techniques. The longitudinal orientation of collagen molecules within a fibril has a significant effect on the mechanical and biological properties of the fibril, owing to the different amino acid side chains available at the interface between the molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号