首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have identified the gene for a major component of the prohead core of bacteriophage T4, the 17K protein. The gene, which we call gene 68, lies between genes 67 and 21 in the major cluster of T4 head genes. All of the genes in this region of the T4 genome have overlapping initiation and termination codons with the sequence T-A-A-T-G. We present the DNA sequence of the gene and show that it codes for a protein containing 141 amino acids with an acidic amino-terminal half and a basic carboxyl terminus. Antibodies prepared against the 17K protein were used to show that it is cleaved by the phage-coded gp21 protease during head maturation and that most of the protein leaves the head after cleavage. A frameshift mutation of the gene was constructed in vitro and recombined back into the phage genome. The mutated phages had a drastically reduced burst size and about half of the particles produced were morphologically abnormal, having isometric rather than prolate heads. Thus, the 17K protein is involved in head shape determination but is only semi-essential for T4 growth.  相似文献   

2.
Structure and assembly of the capsid of bacteriophage P22.   总被引:2,自引:0,他引:2  
Identification of the genes and proteins involved in phage P22 formation has permitted a detailed analysis of particle assembly, revealing some unexpected aspects. The polymerization of the major coat protein (gene 5 product) into an organized capsid is directed by a scaffolding protein (gene 8 product) which is absent from mature phage. The resulting capsid structure (prohead) is the precursor for DNA encapsidation. All of the scaffolding protein exits from the prohead in association with DNA packaging. These molecules then recycle, directing further rounds of prohead assembly. The structure of the prohead has been studied by electron microscopy of thin sections of phage infected cells, and by low angle X-ray scattering of concentrated particles. The results show that the prohead is a double shell structure, or a ball within a shell. The inner ball or shell is composed of the scaffolding protein while the outer shell is composed of coat protein. The conversion from prohead to mature capsid is associated with an expansion of the coat protein shell. It is possible that the scaffolding protein molecules exit through the capsid lattice. When DNA encapsidation within infected cells is blocked by mutation, scaffolding protein is trapped in proheads and cannot recycle. Under these conditions, the rate of synthesis of gp8 increases, so that normal proheads continue to form. These results suggest that free scaffolding protein negatively regulates its own further synthesis, providing a coupling between protein synthesis and protein assembly.  相似文献   

3.
TA Quinten  A Kuhn 《Journal of virology》2012,86(20):11107-11114
Assembly of the bacteriophage T4 head structure occurs at the cytoplasmic face of the inner membrane of Escherichia coli with the formation of proheads. The proheads contain an internal scaffolding core that determines the size and the structure of the capsid. In a mutant where the major shell protein gp23 was compromised, core structures without a shell had been detected. Such core structures were also found in the mutant T4am20am23. Since the mutation in gene 20 is at the N terminus of gp20, it was assumed that these core structures assemble in the absence of gp20. However, sequencing showed that the mutation introduces a new ribosome binding site that leads to a restart at codon 15. Although the mutant protein gp20s lacks the very N-terminal sequence, we found that it still binds to the membrane of the host cell and can initiate prohead assembly. This explains its activity to allow the assembly of core structures and proheads at the membrane surface. With a cross-linking approach, we show here that gp20 and gp20s are escorted by the chaperones DnaK, trigger factor, and GroEL and dock on the membrane at the membrane protein YidC.  相似文献   

4.
Missense mutants of bacteriophage lambda that produce small proheads were found among prophage mutants defective in the major head protein gpE. Measurements of the sedimentation coefficient and molecular weight of the small proheads showed that they have the T = 4 structure composed of 240 molecules of gpE instead of the wild-type T = 7 structure composed of 420 molecules of gpE. When the phage mutants were grown in groE mutants of Escherichia coli, they produced small unprocessed proheads, which contained a smaller number (about 60) of the core protein (gpNu3) molecules than normal unprocessed proheads, which contain about 180 molecules of gpNu3. This shows that the major head protein determines the size of not only the shell but also the core of unprocessed proheads. These mutants by themselves produce very few mature small-headed phage particles, partly because the lambda DNA molecule, whose cos sites are separated at a distance of 48,500 bases, is too long to be packaged into the small proheads. However, the small proheads can package shorter DNA in vivo and in vitro at somewhat reduced efficiency, if the length or a multiple of the length between the cos sites of the DNA is 13,000 to 19,000 bases.  相似文献   

5.
The opdA gene of Salmonella typhimurium encodes an endoprotease, oligopeptidase A (OpdA). Strains carrying opdA mutations were deficient as hosts for phage P22. P22 and the closely related phages L and A3 formed tiny plaques on an opdA host. Salmonella phages 9NA, KB1, and ES18.h1 were not affected by opdA mutations. Although opdA strains displayed normal doubling times and were infected by P22 as efficiently as opdA+ strains, the burst size of infectious particles from an opdA host was less than 1/10 of that from an opdA+ host. This decrease resulted from a reduced efficiency of plating of particles from an opdA infection. In the absence of a functional opdA gene, most of the P22 particles are defective. To identify the target of OpdA action, P22 mutants which formed plaques larger than wild-type plaques on an opdA mutant lawn were isolated. Marker rescue experiments using cloned fragments of P22 DNA localized these mutations to a 1-kb fragment. The nucleotide sequence of this fragment and a contiguous region (including all of both P22 gene 7 and gene 14) was determined. The mutations leading to opdA independence affected the region of gene 7 coding for the amino terminus of gp7, a protein required for DNA injection by the phage. Comparison of the nucleotide sequence with the N-terminal amino acid sequence of gp7 suggested that a 20-amino-acid peptide is removed from gp7 during phage development. Further experiments showed that this processing was opdA dependent and rapid (half-life, less than 2 min) and occurred in the absence of other phage proteins. The opdA-independent mutations lead to mutant forms of gp7 which function without processing.  相似文献   

6.
Several related mutants of Escherichia coli C have been isolated that block the growth of the small icosahedral DNA phages phiX174 and S13 late in infection. Phage G6 is also blocked, at a stage not yet known. Growth of the filamentous phage M13, though not blocked, is affected in these strains. These host mutations co-transduce with ilv at high frequency, as do rep- mutations. However, the new mutants, designated groL-, differ from previously studied rep- mutants in that they permit synthesis of progeny replicative-form DNA. The groL- mutants are blocked in synthesis of stable single-stranded DNA of phiX174 and related phages. They are gro+ for P2. Evidence that groL- mutations and rep- mutations are in the same gene is presented. Spontaneous mutants (ogr) of phiX174, S13, and the G phages can grow on groL- strains. The ogr mutations are located in the phage's major capsid gene, F, as determined by complementation tests. There are numerous sites for mutation to ogr. Some mutations in genes A and F interfere with the ogr property when combined with an ogr mutation on the same genome. The ogr mutations are cis acting in a groL- cell; i.e., an ogr mutant gives very poor rescue of a non-ogr mutant. The wild-type form of each G phage appears to be naturally in the ogr mutant state for one or more groL- strains. It is suggested that a complex between F and rep proteins is involved in phage maturation. The A protein appears to interact with this complex.  相似文献   

7.
We have examined a series of lambda proheads and mature structures by small angle X-ray diffraction. This technique yields spherically averaged density distributions and some information about surface organization of particles in solution.We find that gpE 2 of proheads and heads forms shells with one of two radii; A?, B?, groE?, and Nu3? proheads have shells of radius 246 Å, while mature heads, urea-treated A? proheads and C? proheads have a radius of 300 Å. The expansion of proheads to mature heads is accompanied by a corresponding decrease in the thickness of the shell. groE? proheads contain a core. This core is lost spontaneously from the structure and is only observed if the structures are fixed with glutaraldehyde prior to examination by X-ray diffraction or electron microscopy.C? proheads expand to mature head size spontaneously. A preparation of C? proheads which was fixed with glutaraldehyde at an early stage of the purification had the smaller, prohead radius. Unfixed particles from this preparation expanded to the mature head size after further purification and standing in the cold for several days. This result suggests that gpC may be involved in regulating head expansion.The radii of the protein shells of mature heads are identical for a series of phages that contain between 78% and 105% of the wild-type complement of DNA, and this radius is the same as that of proheads expanded in the absence of DNA. These results with phage lambda indicate that assembly of a double shell structure composed of coat and scaffolding protein, followed by expansion to a larger shell containing only coat protein is a general feature of the morphogenesis of dsDNA phages.  相似文献   

8.
A mutation (byp24) affecting the N-terminal region of p23 will suppress the lethal effects of am and ts mutations in gene 24. In the presence of normal p24, the byp24 alteration causes a delay in the cleavage of capsid proteins and the assembly of a high percentage of isometric, short-headed particles; therefore, the byp24 mutation can affect the length of the T4 capsid. In the absence of p24, 24?byp24 double mutants show a reduced rate of cleavage of capsid precursor proteins, and a reduced rate of virus assembly.Iminunoprecipitation with anti-p24 serum has shown the presence of both p24 and p24c in wild-type phage particles. The 24?byp24 particles contain no p24 or p24c, as determined by immunoprecipitation, urea/acrylamide gel electrophoresis, and two-dimensional isoelectric focusing, urea/acrylamide gradient gel electrophoresis. They have a normal electron microscopic appearance, pH stability, and heat stability; but they are more resistant to osmotic shock than wild-type T4. We suggest that p24 normally functions in the initiation of phage T4 capsid protein cleavage reactions.  相似文献   

9.
V B Rao  L W Black 《Cell》1985,42(3):967-977
A phage T4 DNA packaging enzyme appears to arise as a processed form of the major T4 capsid structural protein gp23. The enzyme activity and antigen are missing from all head gene mutants that block the morphogenetic proteolytic processing reactions of the head proteins in vivo. The enzyme antigen can be formed in vitro by T4 (gp21) specific processing of gp23 containing extracts. Enzyme antigen is found in active processed proheads but not in full heads. The enzyme and the major capsid protein show immunological cross-reactivity, produce common peptides upon proteolysis, and share an assembly-conformation-dependent ATP binding site. The packaging enzyme and the mature capsid protein (gp23*) both appear to arise from processing of gp23, the former as a minor product of a specific gp23 structure in the prohead, acting in DNA packaging as a DNA-dependent ATPase, and a headful-dependent terminase.  相似文献   

10.
M. Snyder  W. B. Wood 《Genetics》1989,122(3):471-479
Gene 37 of T4 encodes the major subunit of the distal half of the tail fiber. The distal tip of the fiber, comprised of the carboxy-terminal ends of two molecules of gene 37 product (gp37), carries the principal determinant of the phage host range. The gp37 carboxyl termini recognize the bacterial surface during infection, and, in addition, include a site required for interaction with the product of gp38 during distal half-fiber assembly. In the absence of interaction with gp38, gp37 polypeptides do not dimerize. Eleven temperature-sensitive mutants with defects located near the promoter-distal end of gene 37 were tested at nonpermissive temperatures for production of an antigen that is diagnostic of distal half-fiber assembly. Six of the mutations prevent distal half-fiber assembly. The other five allow assembly of distal half fibers, which combine with proximal half fibers and attach to phage particles, but the resulting phage do not adsorb to bacteria. These two classes of mutations define two adjacent but separate genetic regions, corresponding to two different functional domains in gp37. These two regions and the neighboring gene 38 comprise a functional unit that can be considered as a host-range "cassette," with features that are strikingly similar to corresponding functional units in other unrelated as well as related phages.  相似文献   

11.
The assembly of the precursor shells of bacteriophage P22 entails the co-polymerization of gene 5 coat protein with gene 8 scaffolding protein into double shell structures. During DNA encapsidation, the inner shell of scaffolding molecules dissociates and exits from the prohead. These molecules then recycle, catalyzing the assembly of newly synthesized coat protein to form new proheads (King and Casjens, 1974).Although gene 5 and gene 8 are adjacent on the phage chromosome, we find that the synthesis of the two proteins is differentially regulated. In productively infected cells, scaffolding protein is synthesized at a low rate relative to the coat protein. In contrast, cells that are infected with mutants blocked in DNA packaging and accumulate precursor shells synthesize scaffolding protein at a much higher rate. If a mutation is introduced into the coat protein gene, however, preventing shell assembly, the rate of scaffolding protein synthesis decreases to less than the wild-type rate.The experiments are consistent with models in which either continued synthesis of scaffolding protein depends upon co-polymerization with coat subunits, or soluble scaffolding subunits (but not assembled subunits) depress their own further synthesis. The finding that amber fragments of the scaffolding protein are synthesized at a very low rate is inconsistent with the second model. There is evidence, however, that fragments of the protein may have regulatory activity.The regulatory circuit couples scaffolding protein synthesis to morphogenesis. Gene dosage experiments show that regulation results in the maintenance of coat and scaffolding subunits in the proper ratio for shell assembly.  相似文献   

12.
Isolation and some properties of bacteriophage alpha3 gene J mutant   总被引:1,自引:0,他引:1  
Summary To elucidate the in vivo function of the J gene of microvirid (isometric) phages, we isolated several strains carrying a double mutation in J and H genes from phage 3 and then constructed single mutants each having an amber codon in the J gene. The J mutants could not multiply in suppressor-less hosts and were deficient in single-stranded progeny DNA synthesis. Nucleotide sequences of the wild-type and mutant 3 J genes were analyzed to determine the mutation sites. The amino acid sequence of the J gene was also deduced from the nucleotide sequence and compared with those of X174 and G4.  相似文献   

13.
The effect of mutations in the cistrons coding for the phage structural proteins has been studied by analyzing the phage-related structures accumulated after restrictive infection. Infection with susmutants in cistron 8, lacking both the major head and the fiber protein, does not produce any phage-related structure, suggesting a single route for the assembly of phage phi29; infection with ts mutants in this cistron produces isometric particles. Mutants is cistron 9, coding for the tail protein, TP1, produce DNA-free prolate heads with an internal core; these particles are abortive and contain the head proteins HPO, HP1 and HP3, the upper collar protein NP2 and the nonstructural proteins p7, p15 and p16. Mutants in cistron 10, coding for the upper collar protein, NP2, produce DNA-free isometric heads also with an internal core; they contain the head proteins and the nonstructural protein p7, suggesting that this protein forms the internal core. Mutants in cistrons 11 and 12, coding for the lower collar protein, NP3, and the neck appendages, NP1, respectively, give rise to the formation of DNA-containing normal capsids and DNA-free prolate particles, more rounded at the corners than the normal capsids and with an internal core; the DNA-containing 11-particles are formed by the head proteins and the upper collar protein; the DNA-free 11-particles contain, besides these proteins, the nonstructural protein p7 and a small amount of proteins p15 and 16. The DNA-containing 12-particles have all the normal phage structural proteins except the neck appendages, formed by protein NP1; the DNA-free particles are similar to the DNA-free 11-particles. After restricitive infection mutant sus14(1241) has a delayed lysis phenotype and produces a phage burst higher than normal, after artificial lysis. It produces DNA-containing particles, identical to wild-type phage, which have all the normal phage structural proteins, and DNA-free prolate particles, more rounded at the corners than the final phage particles and with an internal core; the last particles contain the same proteins as the DNA-free 11 or 12-particles. These particles could represent a prohead state, ready for DNA encapsulation. None of the DNA-containing particles have the nonstructural proteins p7, p15 or p16, suggesting that these proteins are released from the proheads upon DNA encapsulation.  相似文献   

14.
The development of bacteriophage lambda and double-stranded DNA viruses in general involves the convergence of two separate pathways: DNA replication and head assembly. Clearly, packaging will proceed only if an empty capsid shell, the prohead, is present to receive the DNA, but genetic evidence suggests that proheads play another role in the packaging process. For example, lambda phages with an amber mutation in any head gene or in FI, the gene encoding the accessory packaging protein gpFI, are able to produce normal amounts of DNA concatemers but they are not cut, or matured, into unit length chromosomes for packaging. Similar observations have been made for herpes simplex 1 virus. In the case of lambda, a negative model proposes that in the amber phages, unassembled capsid components are inhibitory to maturation, and a positive model suggests that assembled proheads are required for cutting. We tested the negative model by using a deletion mutant devoid of all prohead genes and FI in an in vivo cos cleavage assay; in this deleted phage, the cohesive ends were not cut. When lambda proheads and gpFI were provided in vivo via a second prophage, cutting was restored, and gpFI was required, results that support the positive model. Phage 21 is a sister phage of lambda, and although its capsid proteins share approximately 60% residue identity with lambda's, phage 21 proheads did not restore cutting, even when provided with the accessory protein gpFI. Models for the role of proheads and gpFI in cos cutting are discussed.  相似文献   

15.
I Riede  M Degen    U Henning 《The EMBO journal》1985,4(9):2343-2346
T-Even type bacteriophages recognize their cellular receptors with the distal ends of their long tail fibers. The distal part of these fibers consists of a dimer of gene product (gp) 37. The assembly of this gp to a functional dimer requires the action of two other proteins, gp57 and gp38. Genes (g) 38 have been cloned from five T-even type phages which use the Escherichia coli outer membrane protein OmpA as a receptor. The phages used differ in their ability to infect a series of ompA mutants producing altered OmpA proteins, i.e., each phage has a specific host range for these mutants. The cloned genes 38 complemented g38 amber mutants of phage T2, which uses the outer membrane protein OmpF as a receptor. The complemented phages had become phenotypically OmpA-dependent and, with one exception, OmpF-independent, but regained the host range of T2 upon growth in a host lacking the cloned g38. The host range of the complemented phages, as determined on the ompA mutants, was identical to, similar to, or different from that of the phage, from which the cloned g38 originated. The results presented show that gp38 from one phage can phenotypically 'imprint', in a finely-tuned manner, a host range onto gp37 of another phage with a different host specificity. In view of the extreme diversity of host ranges observed, it is suggested that gp38 of T2 and of the OmpA-specific phages may remain attached to gp37 in the phage particle and in cooperation with gp37 determine the host range.  相似文献   

16.
We have found that two different temperature-sensitive mutations in gene 22, tsA74 and ts22-2, produce high frequencies (up to 85%) of petite phage particles when grown at a permissive or intermediate temperature. Moreover, the ratio of petite to normal particles in a lysate depends upon the temperature at which the phage are grown. These petite phage particles appear to have approximately isometric heads when viewed in the electron microscope, and can be distinguished from normal particles by their sedimentation coefficient and by their buoyant density in CsCl. They are biologically active as detected by their ability to complement a co-infecting amber helper phage. Lysates of both mutants grown at a permissive temperature reveal not only a significant number of petite phage particles in the electron microscope, but also sizeable classes of wider-than-normal particles, particles having abnormally attached tails, and others having more than one tail.Striking protein differences exist between the purified phage particles of tsA74 or ts22-2 and wild-type T4. B11, a 61,000 molecular weight head protein, is completely absent from the phage particles of both mutants, and the internal protein IPIII1 is present in reduced amounts as compared to wild type. The precursor to B11 is present in the lysates, but these mutations appear to prevent its incorporation into heads, so it does not become cleaved.The product of gene 22 (P22) is known to be the major protein of the morphogenetic core of the T4 head. Besides the mutations reported here, several mutations which affect head length have been found in gene 23, which codes for the major capsid protein (Doermann et al., 1973b). We suggest a model in which head length is determined by an interaction between the core (P22 and IPIII) and the outer shell (P23).  相似文献   

17.
We have identified and characterized structural intermediates in phage P22 assembly. Three classes of particles can be isolated from P22-infected cells: 500 S full heads or phage, 170 S empty heads, and 240 S “proheads”. One or more of these classes are missing from cells infected with mutants defective in the genes for phage head assembly. By determining the protein composition of all classes of particles from wild type and mutant-infected cells, and examining the time-course of particle assembly, we have been able to define many steps in the pathway of P22 morphogenesis.In pulse-chase experiments, the earliest structural intermediate we find is a 240 S prohead; it contains two major protein species, the products of genes 5 and 8. Gene 5 protein (p5) is the major phage coat protein. Gene 8 protein is not found in mature phage. The proheads contain, in addition, four minor protein species, PI, P16, P20 and PX. Similar prohead structures accumulate in lysates made with mutants of three genes, 1, 2 and 3, which accumulate uncut DNA. The second intermediate, which we identify indirectly, is a newly filled (with DNA) head that breaks down on isolation to 170 S empty heads. This form contains no P8, but does contain five of the six protein species of complete heads. Such structures accumulate in lysates made with mutants of two genes, 10 and 26.Experiments with a temperature-sensitive mutant in gene 3 show that proheads from such 3? infected cells are convertible to mature phage in vivo, with concomitant loss of P8. The molecules of P8 are not cleaved during this process and the data suggest that they may be re-used to form further proheads.Detailed examination of 8? lysates revealed aberrant aggregates of P5. Since P8 is required for phage morphogenesis, but is removed from proheads during DNA encapsulation, we have termed it a scaffolding protein, though it may have DNA encapsulation functions as well.All the experimental observations of this and the accompanying paper can be accounted for by an assembly pathway, in which the scaffolding protein P8 complexes with the major coat protein P5 to form a properly dimensioned prohead. With the function of the products of genes 1, 2 and 3, the prohead encapsulates and cuts a headful of DNA from the concatemer. Coupled with this process is the exit of the P8 molecules, which may then recycle to form further proheads. The newly filled heads are then stabilized by the action of P26 and gene 10 product to give complete phage heads.  相似文献   

18.
The article continues a study of pseudolysogeny in Pseudominas aeruginosa infected with phiKZ-like phages of the EL species. Analysis was performed for several newly isolated vir mutants of EL phages (EL and RU) that were virulent (capable of causing lysis of bacteria infected with the wild-type phage) and a lower extent of opalescence of negative colonies (NCs). Wile-type recombinants were detected in crosses of virulent mutants of phages EL and RU to confirm the polygenic control of virulence. Since a deletion mutation was found in one of the virulent EL mutants and high genetic instability was characteristic of another mutant, a mobile genetic element was assumed to play a role in mutagenesis. Pseudolysogeny of bacteria provides for horizontal gene transfer between different bacterial strains. Hence, sequencing of the phage genome and demonstration of the lack of toxic gene products are insufficient for the phage to be included into a therapeutic mixture. To use live phages, it is essential to study in detail the possible consequences of their interaction with host bacteria.  相似文献   

19.
The article continues a study of pseudolysogeny in Pseudominas aeruginosa infected with phiKZ-like phages of the EL species. Analysis was performed for several newly isolated virulent mutants of EL phages (EL and RU) that were virulent (capable of causing lysis of bacteria infected with the wild-type phage) and a lower extent of opalescence of negative colonies (NCs). Wile-type recombinants were detected in crosses of virulent mutants of phages EL and RU to confirm the polygenic control of virulence. Since a deletion mutation was found in one of the virulent EL mutants and high genetic instability was characteristic of another mutant, a mobile genetic element was assumed to play a role in mutagenesis. Pseudolysogeny of bacteria provides for horizontal gene transfer between different bacterial strains. Hence, sequencing of the phage genome and demonstration of the lack of toxic gene products are insufficient for the phage to be included into a therapeutic mixture. To use live phages, it is essential to study in detail the possible consequences of their interaction with host bacteria.  相似文献   

20.
Bacteriophage lambda with mutations in genes that control prohead assembly and other head precursors cannot mature their DNA. In this paper we present evidence that the failure of these phage mutants to mature DNA is a reflection of a mechanism that modulates terminase nicking activity during normal phage development. We have constructed plasmids that contain the lambda-cohesive end site (cos) and the genes that code for DNA terminase, the enzyme that matures DNA by cutting at cos. The DNA terminase genes are under control of a thermosensitive cI repressor. These plasmids lack most of the genes involved in prohead morphogenesis and other head precursors. However, when repression is lifted by destruction of the thermosensitive repressor, the terminase synthesized is able to cut almost 100% of the plasmids. Therefore, these plasmids can mature in the absence of proheads and other head gene products. The plasmids are also able to complement mutants of lambda deficient in terminase and DNA maturation. However, in these complementation experiments, if the phage carry mutations in prohead genes E or B, not only is phage DNA maturation blocked, but the plasmid also fails to mature. These experiments show that, in the absence of proheads, phage lambda produces a trans-acting inhibitor of maturation. The genetic determinant of this inhibitor maps in a region extending from the middle of gene B to the end of gene C. A model is proposed in which the nicking activity of DNA-bound terminase is inhibited by the trans-acting inhibitor. Prohead (and other factors) binding to this complex would release the block to allow DNA cleavage and packaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号