首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using field and greenhouse studies, we examined the relationships among pinyon pines (Pinus edulis), their ectomycorrhizal mutualists, and their moth herbivores as a function of soil fertility. We studied two soil types—the ash and cinder soils of the San Francisco volcanic field and nearby sandy loam soils. In the field, pinyons growing in cinders suffered from reduced moisture, negative nitrogen mineralization rates, low phosphate levels, reduced growth, and high moth herbivory relative to pinyons growing in sandy loam. Pinyons growing in cinders also had twofold higher levels of ectomycorrhizal colonization than their noncinder counterparts. Similarly, in the greenhouse, seedlings grown in cinders had higher levels of ectomycorrhizal colonization and greater numbers of ectomycorrhizae than seedlings grown in sandy loam. Seedling shoot growth was significantly enhanced by ectomycorrhizae in both soils. These patterns support three conclusions. First, field and greenhouse studies demonstrated that trees growing in nutrient-poor soils had higher levels of ectomycorrhizal colonization than trees growing in better soils. Second, across soil types, variation in ectomycorrhizal colonization was better predicted by soil fertility than by herbivory. However, herbivory negatively affected ectomycorrhizae in the stressful cinder environment. Third, although mycorrhizae can be parasitic under some conditions, ectomycorrhizae had mutualistic impacts on pinyon seedlings across the environmental extremes we studied.  相似文献   

2.
Plants engage in complex multipartite interactions with mutualists and antagonists, but these interactions are rarely included in studies that explore plant invasiveness. When considered in isolation, we know that beneficial microbes can enhance an exotic plant’s invasive ability and that herbivorous insects often decrease an exotic plant’s likeliness of success. However, the effect of these partners on plant fitness has not been well characterized when all three species coevolve. We use computational evolutionary modeling of a trait-based system to test how microbes and herbivores simultaneously coevolving with an invading plant affect the invaders’ probability of becoming established. Specifically, we designed a model that explores how a beneficial microbe would influence the outcome of an interaction between a plant and herbivore. To model novel interactions, we included a phenotypic trait shared by each species. Making this trait continuous and selectable allows us to explore how trait similarities between coevolving plants, herbivores and microbes affect fitness. Using this model, we answer the following questions: (1) Can a beneficial plant-microbe interaction influence the evolutionary outcome of antagonistic interactions between plants and herbivores? (2) How does the initial trait similarity between interacting organisms affect the likelihood of plant survival in novel locations? (3) Does the effect of tripartite interactions on the invasion success of a plant depend on whether organisms interact through trait similarity [Enemy Release Hypothesis (ERH)] or dissimilarity (Biotic Resistance Hypothesis)? We found that it was much more difficult for plants to invade under the ERH but that beneficial microbes increase the probability of plant survival in a novel range under both hypotheses. To our knowledge, this model is the first to use tripartite interactions to explore novel species introductions. It represents a step towards gaining a better understanding of the factors influencing establishment of exotic species to prevent future invasions.  相似文献   

3.
Few studies have examined how below-ground interactions among plants affect the abundance and community composition of symbiotic mycorrhizal fungi. Here, we combined observations during drought with a removal experiment to examine the effects of below-ground interactions with arbuscular mycorrhizal (AM) shrubs on the growth of pinyon pines (Pinus edulis), and the abundance and community composition of their ectomycorrhizal (EM) fungi. Shrub density was negatively correlated with pinyon above- and below-ground growth and explained 75% of the variation in EM colonization. Consistent with competitive release, pinyon fine-root biomass, shoot length and needle length increased with shrub removal. EM colonization also doubled following shrub removal. EM communities did not respond to shrub removal, perhaps because of their strikingly low diversity. These results suggest that below-ground competition with AM shrubs negatively impacted both pinyons and EM fungi. Similar competitive effects may be observed in other ecosystems given that drought frequency and severity are predicted to increase for many land interiors.  相似文献   

4.
Plant growth, reproduction and survival can be affected both by mycorrhizal fungi and aboveground herbivores, but few studies have examined the interactive effects of these factors on plants. Most of the available data suggest that severe herbivory reduces root colonization by vesicular-arbuscular and ectomycorrhizal fungi. However, the reverse interaction has also been documented - mycorrhizal fungi deter herbivores and interact with fungal endophytes to influence herbivory. Although consistent patterns and mechanistic explanations are yet to emerge, it is likely that aboveground herbivore-mycorrhiza interactions have important implications for plant populations and communities.  相似文献   

5.
Different species have different dispersal capabilities and in the field, species interact with each other within dynamic, heterogeneous and complex landscapes. While plants and certain herbivore species may disperse considerable distances by means of seed dispersal or flight, other herbivores (e.g. root‐feeding nematodes or non‐winged insect herbivores) are more limited in their dispersal capacities. This difference in dispersal capabilities results in mosaics of plant–herbivore interactions that shift over time and space leading to spatio‐temporal variation in both the presence and absence of the species and their interactions. We developed an individual based simulation model in which we examined how multi‐species interactions are affected by their mobility within structurally complex landscapes. The main objective was to address the consequences for the arms race between plant defence and herbivore resistance to changes in fundamental landscape and community attributes. We demonstrate that feedbacks between landscape structure, community structure and the specific dispersal rate of the species involved affect the evolutionary dynamics between plants and herbivore antagonists. While three‐species interactions result in increased plant defence and herbivore resistance, effects of dispersal have diverse effects depending on the prevailing landscape structure.  相似文献   

6.
Plants frequently suffer attack from herbivores and microbial pathogens, and have evolved a complex array of defence mechanisms to resist defoliation and disease. These include both preformed defences, ranging from structural features to stores of toxic secondary metabolites, and inducible defences, which are activated only after an attack is detected. It is well known that plant defences against pests and pathogens are commonly affected by environmental conditions, but the mechanisms by which responses to the biotic and abiotic environments interact are only poorly understood. In this review, we consider the impact of light on plant defence, in terms of both plant life histories and rapid scale molecular responses to biotic attack. We bring together evidence that illustrates that light not only modulates defence responses via its influence on biochemistry and plant development but, in some cases, is essential for the development of resistance. We suggest that the interaction between the light environment and plant defence is multifaceted, and extends across different temporal and biological scales.  相似文献   

7.
While many studies demonstrate that herbivores alter selection on plant reproductive traits, little is known about whether antiherbivore defenses affect selection on these traits. We hypothesized that antiherbivore defenses could alter selection on reproductive traits by altering trait expression through allocation trade‐offs, or by altering interactions with mutualists and/or antagonists. To test our hypothesis, we used white clover, Trifolium repens, which has a Mendelian polymorphism for the production of hydrogen cyanide—a potent antiherbivore defense. We conducted a common garden experiment with 185 clonal families of T. repens that included cyanogenic and acyanogenic genotypes. We quantified resistance to herbivores, and selection on six floral traits and phenology via male and female fitness. Cyanogenesis reduced herbivory but did not alter the expression of reproductive traits through allocation trade‐offs. However, the presence of cyanogenic defenses altered natural selection on petal morphology and the number of flowers within inflorescences via female fitness. Herbivory influenced selection on flowers and phenology via female fitness independently of cyanogenesis. Our results demonstrate that both herbivory and antiherbivore defenses alter natural selection on plant reproductive traits. We discuss the significance of these results for understanding how antiherbivore defenses interact with herbivores and pollinators to shape floral evolution.  相似文献   

8.
Mühlmann O  Göbl F 《Mycorrhiza》2006,16(4):245-250
The ectomycorrhizal basidiomycete species Lactarius deterrimus Gröger is considered to be a strictly host-specific mycobiont of Picea abies (L.) Karst. However, we identified arbutoid mycorrhiza formed by this fungus on the roots of Arctostaphylos uva-ursi (L.) Spreng. in a mixed stand at the alpine timberline; typical ectomycorrhiza of P. abies were found in close relation. A. uva-ursi is known as an extremely unspecific phytobiont. The mycorrhizae of both associations are described and compared morphologically. The mycorrhiza formed by L. deterrimus on both A. uva-ursi and P. abies show typical ectomycorrhizal features such as a hyphal mantle and a Hartig net. The main difference between the mycorrhizal symbioses with the different phytobionts is the occurrence of intracellular hyphae in the epidermal cells of A. uva-ursi. This emphasizes the importance of the plant partner for mycorrhizal anatomy. This is the first report of a previously considered host-specific ectomycorrhizal fungus in association with A. uva-ursi under natural conditions. The advantages of this loose specificity between the fungus and plant species is discussed.  相似文献   

9.
10.
Haskins KE  Gehring CA 《Oecologia》2005,145(1):123-131
The ability of seedlings to establish can depend on the availability of appropriate mycorrhizal fungal inoculum. The possibility that mycorrhizal mutualists limit the distribution of seedlings may depend on the prevalence of the plant hosts that form the same type of mycorrhizal association as the target seedling species and thus provide inoculum. We tested this hypothesis by measuring ectomycorrhizal (EM) fine root distribution and conducting an EM inoculum potential bioassay along a gradient of EM host density in a pinyon–juniper woodland where pinyon is the only EM fungal host while juniper and other plant species are hosts for arbuscular mycorrhizal (AM) fungi. We found that pinyon fine roots were significantly less abundant than juniper roots both in areas dominated aboveground by juniper and in areas where pinyon and juniper were co-dominant. Pinyon seedlings establishing in pinyon–juniper zones are thus more likely to encounter AM than EM fungi. Our bioassay confirmed this result. Pinyon seedlings were six times less likely to be colonized by EM fungi when grown in soil from juniper-dominated zones than in soil from either pinyon–juniper or pinyon zones. Levels of EM colonization were also reduced in seedlings grown in juniper-zone soil. Preliminary analyses indicate that EM community composition varied among sites. These results are important because recent droughts have caused massive mortality of mature pinyons resulting in a shift towards juniper-dominated stands. Lack of EM inoculum in these stands could reduce the ability of pinyon seedlings to re-colonize sites of high pinyon mortality, leading to long-term vegetation shifts.  相似文献   

11.
Recent advances along numerous research avenues show that plant interactions with biotrophic and necrotrophic pathogens use similar pathways with opposing effects. The hypersensitive response is associated with increased biotroph resistance but decreased necrotroph resistance. In plant/herbivore interactions, opposing effects of defenses against specialist versus generalist herbivores are controlled by plant secondary metabolites, where a metabolite that provides resistance to generalist herbivores may stimulate specialist herbivores. This multi-trophic interaction is presented as an ecological cost of plant resistance, but similar concepts are rarely applied to plant interactions with different classes of pathogens. In this review, we begin to describe how necrotrophic pathogens may place an ecological cost upon plant resistance to biotrophic pathogens. We separate these potential ecological costs into three concepts: (1) the local cost of the hypersensitive response, (2) organismal cost of having machinery for a hypersensitive response and (3) antagonism between salicylate and jasmonate signaling. We describe the literature supporting these concepts and some predictions that they generate.  相似文献   

12.
Perennial plants interact with herbivores and pollinators across multiple growing seasons, and thus may respond to herbivores and pollinators both within and across years. Joint effects of herbivores and pollinators influence plant traits, but while some of the potential interactions among herbivory, pollination, plant size, and plant reproductive traits have been well studied, others are poorly understood. This is particularly true for perennial plants where effects of herbivores and pollinators may manifest across years. Here, we describe two experiments addressing the reciprocal interactions of plant traits with herbivore damage and pollination across 2 years using the perennial plant Chamerion angustifolium. We measured (1) plant responses to manipulation of damage and pollination in the year of treatment and the subsequent season, (2) damage and pollination responses to manipulation of plant size and flowering traits in the year of treatment, and (3) plant-mediated indirect interactions between herbivores and pollinators. We found that plant traits had little effect on damage and pollination, but damage and pollination affected plant traits in both the treatment year and the subsequent year. We found evidence of indirect effects between leaf herbivores and pollinators in both directions; indirect effects of pollinators on leaf herbivores have not been previously demonstrated. Our results indicate that pollen receipt results in shorter plants with fewer stems but does not change flower number, while leaf herbivory results in taller plants with fewer flowers. Together, herbivory and pollination may contribute to intermediate plant height and plants with fewer stems and flowers in our system.  相似文献   

13.
Effects of a belowground mutualism on an aboveground mutualism   总被引:3,自引:1,他引:2  
Studies of multitrophic interactions between below‐ and aboveground communities have generally focused on soil organisms and antagonists of plant shoots and leaves (herbivores). Despite the widespread occurrence of plant mutualists below‐ and aboveground which can occur on the same host plant, the potential for interactions between them has not been considered. Here we demonstrate that aboveground plant mutualists, insect pollinators, are strongly influenced by belowground plant mutualists, arbuscular mycorrhizal fungi. The presence of arbuscular mycorrhizal fungi in the roots of Chamerion angustifolium increased pollinator visitation and per cent seed set of this plant in the field by up to two times compared with non‐mycorrhizal plants. We propose that interactions between belowground and aboveground mutualisms are widespread and may play important functional roles in populations and communities.  相似文献   

14.
In nature, plants regularly interact with herbivores and with wind. Herbivores can wound and alter the structure of plants, whereas wind can exert aerodynamic forces that cause the plants to flutter or sway. While herbivory has many negative consequences for plants, fluttering in wind can be beneficial for plants by facilitating gas exchange and loss of excess heat. Little is known about how herbivores affect plant motion in wind. We tested how the mass of an herbivore resting on a broad leaf of the tulip tree Liriodendron tulipifera, and the damage caused by herbivores, affected the motion of the leaf in wind. For this, we placed mimics of herbivores on the leaves, varying each herbivore's mass or position, and used high‐speed video to measure how the herbivore mimics affected leaf movement and reconfiguration at two wind speeds inside a laboratory wind tunnel. In a similar setup, we tested how naturally occurring herbivore damage on the leaves affected leaf movement and reconfiguration. We found that the mass of an herbivore resting on a leaf can change that leaf's orientation relative to the wind and interfere with the ability of the leaf to reconfigure into a smaller, more streamlined shape. A large herbivore load slowed the leaf's fluttering frequency, while naturally occurring damage from herbivores increased the leaf's fluttering frequency. We conclude that herbivores can alter the physical interactions between wind and plants by two methods: (1) acting as a point mass on the plant while it is feeding and (2) removing tissue from the plant. Altering a plant's interaction with wind can have physical and physiological consequences for the plant. Thus, future studies of plants in nature should consider the effect of herbivory on plant–wind interactions, and vice versa.  相似文献   

15.
Mutualists have been suggested to play an important role in the assembly of many plant and animal communities, but it is not clear how this depends on environmental factors. Do, for instance, natural disturbances increase or decrease the role of mutualism? We focused on entire guilds of mutualists, studying seed‐dispersing ants and ant‐dispersed plants along gradients of inundation disturbances. We first studied how abundance and richness of the mutualists, relative to non‐mutualists, change along 35 small‐scale gradients of inundation disturbances. We found that at disturbed sites, mutualistic plant species, those that reproduce by seeds dispersed by ants, increased in abundance and in consequences in richness, relative to other herbaceous plants. In contrast, we found that among the epigeic arthropods the abundance of mutualists declined, even more so than other arthropods. Correspondingly, distributions of plant and animal mutualists became increasingly discordant at disturbed sites: most plant mutualists were spatially separated from most animal mutualists. We finally found that high abundances of plant mutualists did not translate into a high nutrition service rendered to ants: at disturbed sites, many of the plants of ant‐dispersed species did not produce seeds, which coincided with a decline in seed dispersal by ants and a changing searching behavior of the ants. Overall, the small‐scale natural disturbances we studied were correlated to a major change in the assembly of mutualist guilds. However, the correlation was often opposite between interacting plant and animal mutualist guilds and may thus reduce the potential interaction between them.  相似文献   

16.
Most organisms engage in beneficial interactions with other species; however, little is known regarding how individuals balance the competing demands of multiple mutualisms. Here we examine three-way interactions among a widespread grass, Schedonorus phoenix , a protective fungal endophyte aboveground, Neotyphodium coenophialum , and nutritional symbionts (arbuscular mycorrhizal fungi) belowground. In a greenhouse experiment, we manipulated the presence/absence of both fungi and applied a fertilizer treatment to individual plants. Endophyte presence in host plants strongly reduced mycorrhizal colonization of roots. Additionally, for plants with the endophyte, the density of endophyte hyphae was negatively correlated with mycorrhizal colonization, suggesting a novel role for endophyte abundance in the interaction between the symbionts. Endophyte presence increased plant biomass, and there was a positive correlation between endophyte hyphal density and plant biomass. The effects of mutualists were asymmetric: mycorrhizal fungi treatments had no significant impact on the endophyte and negligible effects on plant biomass. Fertilization affected all three species – increasing plant biomass and endophyte density, but diminishing mycorrhizal colonization. Mechanisms driving negative effects of endophytes on mycorrhizae may include inhibition via endophyte alkaloids, altered nutritional requirements of the host plant, and/or temporal and spatial priority effects in the interactions among plants and multiple symbionts.  相似文献   

17.
Enzai Du  Jingyun Fang 《Oecologia》2014,174(3):883-892
Plants are frequently attacked by both pathogens and insects, and an attack from one can induce plant responses that affect resistance to the other. However, we currently lack a predictive framework for understanding how pathogens, their vectors, and other herbivores interact. To address this gap, we have investigated the effects of a viral infection in the host plant on both its aphid vector and non-vector herbivores. We tested whether the infection by three different strains of Potato virus Y (PVYNTN, PVYNO and PVYO) on tomato plants affected: (1) the induced plant defense pathways; (2) the abundance and fecundity of the aphid vector (Macrosiphum euphorbiae); and (3) the performance of two non-vector species: a caterpillar (Trichoplusia ni) and a beetle (Leptinotarsa decemlineata). While infection by all three strains of PVY induced the salicylate pathway, PVYNTN induced a stronger and longer response. Fecundity and density of aphids increased on all PVY-infected plants, suggesting that the aphid response is not negatively associated with salicylate induction. In contrast, the performance of non-vector herbivores positively correlated with the strength of salicylate induction. PVYNTN infection decreased plant resistance to both non-vector herbivores, increasing their growth rates. We also demonstrated that the impact of host plant viral infection on the caterpillar results from host plant responses and not the effects of aphid vector feeding. We propose that pathogens chemically mediate insect–plant interactions by activating the salicylate pathway and decreasing plant resistance to chewing insects, which has implications for both disease transmission and insect community structure.  相似文献   

18.
The importance of herbivore–plant and soil biota–plant interactions in terrestrial ecosystems is amply recognized, but the effects of aboveground herbivores on soil biota remain challenging to predict. To find global patterns in belowground responses to vertebrate herbivores, we performed a meta‐analysis of studies that had measured abundance or activity of soil organisms inside and outside field exclosures (areas that excluded herbivores). Responses were often controlled by climate, ecosystem type, and dominant herbivore identity. Soil microfauna and especially root‐feeding nematodes were negatively affected by herbivores in subarctic sites. In arid ecosystems, herbivore presence tended to reduce microbial biomass and nitrogen mineralization. Herbivores decreased soil respiration in subarctic ecosystems and increased it in temperate ecosystems, but had no net effect on microbial biomass or nitrogen mineralization in those ecosystems. Responses of soil fauna, microbial biomass, and nitrogen mineralization shifted from neutral to negative with increasing herbivore body size. Responses of animal decomposers tended to switch from negative to positive with increasing precipitation, but also differed among taxa, for instance Oribatida responded negatively to herbivores, whereas Collembola did not. Our findings imply that losses and gains of aboveground herbivores will interact with climate and land use changes, inducing functional shifts in soil communities. To conceptualize the mechanisms behind our findings and link them with previous theoretical frameworks, we propose two complementary approaches to predict soil biological responses to vertebrate herbivores, one focused on an herbivore body size gradient, and the other on a climate severity gradient. Major research gaps were revealed, with tropical biomes, protists, and soil macrofauna being especially overlooked.  相似文献   

19.
Abstract 1 Eucalypts are an important part of plantation forestry in Asia but, in south China, productivity is very low. This is due to infertile soils and lack of indigenous symbiotic mycorrhizal fungi. The genus Eucalyptus is unusual because it forms both arbuscular (AM) and ectomycorrhizal (ECM) associations. 2 Eucalyptus urophylla saplings were grown with and without AM (Glomus caledonium) and ECM (Laccaria laccata) fungi in a factorial design. Two experiments were performed: one to simulate nursery conditions and the other to simulate the early stages of plantation establishment. Plant growth was measured over 18 weeks and levels of insect attack were recorded. 3 The AM fungus reduced tree growth in the early stages, but the effect appeared to be transient. No effects of ECM were detected on tree growth, but the ectomycorrhiza reduced colonization by the arbuscular mycorrhiza. AM fungi appear to be rapid invaders of the root system, gradually being replaced by ECM. 4 Both fungal types affected levels of damage by insect herbivores. Most importantly, herbivory by the pest insects Anomala cupripes (Coleoptera) and Strepsicrates spp. (Lepidoptera) was decreased by ECM. 5 It is suggested that mycorrhizal effects on eucalypt insects may be determined by carbon allocation within the plant. Future studies of eucalypt mycorrhizas need to take into account the effects of the fungi on foliar‐feeding insects and also the effects of insect herbivory on mycorrhizal establishment.  相似文献   

20.
Despite recent findings that mutualistic interactions between two species may be greatly affected by species external to the mutualism, the implications of such multi-species interactions for the population dynamics of the mutualists are virtually unexplored. In this paper, we ask how the mutualism between the shoot-base boring weevil Apion onopordi and the rust fungus Puccinia punctiformis is influenced by the dynamics of their shared host plant Cirsium arvense, and vice versa. In particular, we hypothesized that the distribution of the weevil's egg load between healthy and rust-infected thistles may regulate the abundance of the mutualists and their host plant. In contrast to our expectations we found that the dynamics of the mutualists are largely determined by the dynamics of their host. This is, to our knowledge, the first demonstration that the dynamics of a mutualism are driven by a third, non-mutualistic species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号