首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability of hepatic S9 mixes derived from different rodent species (rat, mouse, Syrian and Chinese hamster) to activate the mutagens 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) and 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ) was investigated using Salmonella typhimurium strain TA98. In general, the mutagenicity of IQ and MeIQ was greatest in the presence of S9 fractions from Swiss albino mice and least from fractions derived from Chinese hamsters. However, treatment of rats or hamsters with Aroclor 1254 had little or no effect on the activation of IQ or MeIQ to mutagens.  相似文献   

2.
Mutagenic activation of the 3 cooked food mutagens 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ) and 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) was compared in liver and lung enzyme preparations from oxen, pigs and rats. Liver preparations from oxen were the most efficient in activating the mutagens, while the rat enzymes were more active than those from pigs. The different cooking mutagens showed different mutagenic potential. MeIQ was the most potent mutagen, followed by IQ and MeIQx in descending order. In oxen, MeIQx was as potent as IQ. The activation with the lung enzymes was 2-3 orders of magnitude lower than with liver. Furthermore, species differences in mutagenic activation with lung enzymes were small compared with liver enzymes. In lung preparations the differences between IQ and MeIQ were small, but in all 3 animal species the mutagenicity of MeIQx was 1 order of magnitude lower than that of the other 2 mutagens.  相似文献   

3.
An in vitro protocol was designed to separate the process of metabolic activation from the mutational events. Cultured rat hepatocytes were first incubated with the food mutagens 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) or 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ). After the incubation period the medium was removed and further incubated with Salmonella typhimurium TA98. A high direct mutagenic activity of the culture medium was then measured. The half-lives of the mutagenic metabolites formed from IQ and MeIQ were in the order of 45 min. The presence of the cytochrome P450 inhibitors alpha-naphthoflavone and metyrapone during the pre-incubation period reduced the accumulation of mutagenic metabolites. No effects of ascorbate on the mutagenic effects of IQ and MeIQ were seen. (+)-Catechin, another antioxidant and free-radical scavenger, markedly enhanced the number of IQ/MeIQ-induced revertants when added to the hepatocytes. In contrast, (+)-catechin clearly decreased the number of revertants when 9000 X g supernatant from rat liver (S9) was used as an activation system. No marked effect of pentachlorophenol, an inhibitor of hepatocyte sulfation and bacterial O-acetylation, was seen using hepatocytes as an activation system, while the mutagenic activity of both IQ and MeIQ was reduced by 90% in the S9/Salmonella system. The addition of an inhibitor of glucuronidation, galactosamine, or the nucleophile glutathione caused no or only minor decreases in the genotoxic effects of the IQ compounds. With both S9 and hepatocytes as activation systems the relative mutagenic effects observed in the S. typhimurium strains TA98 and TA98 NR were in the same order of magnitude, while a large decrease was seen with TA98/1,8-DNP6. The results show that this in vitro test protocol may be useful as a tool to study mechanisms involved in the formation of mutagenic metabolites.  相似文献   

4.
The metabolic conversion of 2-amino-3-methyl- and 2-amino-3,4-dimethyl-imidazo[4,5-f]quinoline (IQ and MeIQ respectively) to bacterial mutagens was studied using a bacterial mutation assay. Studies were performed using S9 fractions derived from either corn oil (uninduced) or Aroclor-1254-treated Sprague-Dawley rats. Aroclor 1254 treatment lowered the S9 protein concentration required for optimum levels of mutagenesis, enhanced the numbers of mutants observed and altered the effects of metabolic inhibitors and cofactors added to the assay. Studies with uninduced preparations revealed that IQ and MeIQ exhibited similar responses to the effects of metabolic inhibitors and cofactors involved in detoxication reactions. Both IQ and MeIQ activation appeared to be inhibited by the biogenic amines tryptamine and tyramine and inactivated by conjugation with either acetyl coenzyme A or glutathione.  相似文献   

5.
Mutagenic and carcinogenic heterocyclic amines in Chinese cooked foods   总被引:7,自引:0,他引:7  
Samples of 7 foods commonly eaten in the Northeast of China (i.e. fried and broiled fishes and broiled meat) were tested for mutagenicity on Salmonella typhimurium TA98 with S9 mix. The basic fractions of the samples were mutagenic, inducing 33-2930 revertants/g of cooked food. Fried walleye pollack (a kind of cod fish heated on a stainless steel pan) showed the highest mutagenicity, so attempts were made to isolate mutagens from the basic fraction of this food. The mutagens were purified by treatment with blue cotton and HPLC on a semi-preparative ODS column and analytical cation exchange and ODS columns. 5 mutagens were isolated and identified as 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (4,8-DiMeIQx) and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). 1 g of fried fish was estimated to contain 0.16 ng of IQ, 0.03 ng of MeIQ, 6.44 ng of MeIQx, 0.10 ng of 4,8-DiMeIQx and 69.2 ng of PhIP. MeIQx and PhIP accounted for 24% and 4.7%, respectively, of the total mutagenicity. The other 3 heterocyclic amines were each responsible for only 0.3-1.2% of the total mutagenicity.  相似文献   

6.
Sulforaphane, a constituent of broccoli was investigated for its antimutagenic potential against different classes of cooked food mutagens (heterocyclic amines). These include imidazoazaarenes such as 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP); pyridoindole derivatives such as 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1) and 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2); and, dipyridoimidazole derivative such as 2-amino-6-methyldipyrido[1,2-a:3',2'-d]imidazole (Glu-P-1). Tests were carried out by Ames Salmonella/reversion assay using Salmonella typhimurium TA98 (frame shift mutation sensitive) and TA100 (base pair mutation sensitive) bacterial strains in the presence of Aroclor 1254-induced rat liver S9. Results of these in vitro antimutagenicity studies strongly suggest that sulforaphane is a potent inhibitor of the mutagenicity induced by imidazoazaarenes such as IQ, MeIQ and MeIQx (approximately 60% inhibition) and moderately active against pyridoindole derivatives such as Trp-P-1 and Trp-P-2 (32-48% inhibition), but ineffective against dipyridoimidazole derivative (Glu-P-1) in TA 100.  相似文献   

7.
Purified human red blood cell cytosol was used to activate the heterocyclic amines 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ), 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1) and 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2) into mutagenic intermediate(s) in the Salmonella test. The liquid preincubation method in the presence of strain TA98 was utilized. In order to understand the mechanism involved in this metabolic activation, some modulators were incorporated in the medium. The results suggest that an oxygenated hemoprotein, probably oxyhemoglobin, is involved in the activation into genotoxic intermediate(s).  相似文献   

8.
The metabolism of 14C-labelled 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) and 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ) was studied in suspensions of hepatocytes isolated from PCB-pretreated rats. The metabolites found after incubation of IQ/MeIQ (0.1 mM) with PCB-pretreated hepatocytes for 3 h were separated into three principal groups: ethyl acetate-extractable metabolites (2-4%), water soluble metabolites (94-98%) and covalently bound metabolites (0.4-0.5%). The water soluble metabolites were separated by HPLC. The metabolites were evaluated by beta-glucuronidase lability, sulphate incorporation and compared with glucuronides formed by microsomes. Mass spectroscopy and proton NMR were also run. The major metabolites formed were a N2-sulphamate, an O-sulphate in position 5 for IQ and 5 for MeIQ and an O-glucuronide in the same position. The MeIQ N2-sulphamate was much less abundant than the IQ N2-sulphamate. When compared with hepatocytes from uninduced rats, it was found that primarily the formation of ring-hydroxylated conjugates increased after PCB-pretreatment. The major ethyl acetate-extractable metabolites were the N2-acetyl derivatives and an unidentified metabolite. A small peak representing the 5-hydroxy-IQ or 5-hydroxy-MeIQ could also be seen in the HPLC chromatogram of the ethyl acetate extractable metabolites. All major water soluble products described in hepatocytes were also found in urine and bile of uninduced rats exposed to IQ/MeIQ in vivo.  相似文献   

9.
Shishu  A.K. Singla  I.P. Kaur 《Phytomedicine》2003,10(6-7):575-582
Dibenzoylmethane (DBM), a structural analogue of curcumin (a bioactive phytochemical present in a widely used spice turmeric) was screened for its inhibitory effect against seven cooked food mutagens (heterocyclic amines): 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1), 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2), 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and 2-amino-6-methyldipyrido[1,2-a:3',2'-d]imidazole (Glu-P-1), in both TA98 and TA100 strains of Salmonella typhimurium using Ames Salmonella/reversion assay in the presence of Aroclor1254-induced rat liver S9 homogenate. DBM has been reported to antagonize the mutagenicity of several chemical carcinogens in vitro and has recently been shown to be even more effective than curcumin in suppressing the 7,12-dimethylbenz[a]anthracene (DMBA)-induced mammary tumors in rats. But there are no reports regarding its antimutagenic properties against cooked food mutagens. Results of the present investigations clearly indicate that dibenzoylmethane is a very potent antimutagenic agent, that could effectively inhibit mutagenicity induced by all the tested cooked food mutagens in both the frame shift (TA98) as well as the base pair mutation sensitive (TA100) strains of S. typhimurium. These highly potent inhibitory effects of dibenzoylmethane against heterocyclic amines observed in our preliminary investigations strongly warrant further studies of its efficacy as a cancer chemopreventive agent.  相似文献   

10.
The binding of mutagenic pyrolyzates to cell fractions from some gram-negative intestinal bacteria and to thermally treated bacterial cells was investigated. 3-Amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1) and 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2) were effectively bound by several of the bacterial cells. The cell wall skeletons of all bacteria effectively bound Trp-P-1 and Trp-P-2. Their cytoplasmic fractions retained Trp-P-1 and Trp-P-2, but to a lesser extent than the cell wall skeletons. 2-Amino-3-methylimidazo[4,5-f]quinoline (IQ) was not found in their cytoplasmic fractions. These cell wall skeletons also bound 2-amino-6-methyldipyrido[1,2-a:3',2'-d]imidazole (Glu-P-1), 2-amino-5-phenylpyridine (Phe-P-1), IQ, 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ), and 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQX). The amount of each mutagen bound differed with the type of mutagen and the bacterial strain used. The outer membrane of Escherichia coli IFO 14249 showed binding of about 123.7 micrograms/mg of Trp-P-2, and its cytoplasmic membrane bound 57.14 micrograms/mg. Trp-P-2 bound to the bacterial cells was extracted with ammonia (5%), methanol, and ethanol but not with water.  相似文献   

11.
Hepatic microsomal fractions (microsomes) were prepared from male Sprague-Dawley rats. The effect of arachidonic acid on the conversion of the heterocyclic aromatic amine 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) to its genotoxic metabolites was investigated using a modified bacterial mutation assay (indicator: Salmonella typhimurium TA98). Arachidonic acid inhibited the mutagenicity of IQ without effect on the uptake of the active metabolites and/or on the DNA-repair processes within the bacterial cell. The activation of 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and aflatoxin B1 (AFB1) was also inhibited by this polyunsaturated fatty acid.  相似文献   

12.
Mechanism(s) involved in meat mutagen formation and inhibition.   总被引:1,自引:0,他引:1  
The Maillard reaction, which involves Amadori rearrangement as a key step, also results in sugar fragmentation and free radical formation. The imidazoquinoline meat mutagens (2-amino-3-methylimidazo[4,5-f]-quinoline, or IQ, and 2-amino-3,4-dimethylimidazo[4,5-f]quinoline, or MeIQ) are formed from a reaction mixture containing alkylpyridine free radicals and creatinine. The imidazoquinoxaline meat mutagens (2-amino-3,4-dimethylimidazo[4,5-f]-quinoxaline, or MeIQx, and 2-amino-3,4,8-trimethylimidazo[4,5-f]-quinoxaline, or 4,8-DiMeIQx) may be produced by reacting a mixture containing dialkylpyrazine free radicals and creatinine. Two different pathways for free radical formation are proposed. One involves bimolecular ring formation from the enaminol form of the glycoaldehyde alkylimine and is followed by oxidative formation of the free radical. The other pathway involves formation of N,N1-dialkylpyrazinium ions from glyoxal monoalkylimine followed by reduction to produce the free radicals. The respective intermediates (glycoaldehyde alkylimine and glyoxal monoalkylamine) are formed by reacting glycoaldehyde and glyoxal with amino compounds. The glycoaldehyde system reacts faster and produces more free radicals than the glyoxal system. The reactions help to explain the formation of imidazoquinoxaline meat mutagens and their predominance in fried fish and why these mutagens are present in larger quantities in fried ground beef than the imidazoquinoline-type meat mutagens. These two pathways may not be the only mechanisms involved in formation of meat mutagens, but other free radical reactions may also contribute to meat mutagenicity and are mentioned briefly.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The potent food mutagens and carcinogens 2-amino-3-methylimidazol[4,5-f]quinoline (IQ), 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MEIQ) and 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) are probably the most active bacterial mutagens so far discovered. Important discrepancies were found, however, in the specific mutagenicities published for these compounds. This paper analyzes a number of experimental factors that could explain these differences: purity of the compounds, stability under the experimental conditions employed, solvents used, bacterial toxicity, testing procedure, amount and age of the S9 fraction, dose-effect relationships, day-to-day variability, origin of the compounds investigated or of the bacterial strain and age of the strain culture used. None of these factors was found to play a critical role, when the other experimental conditions were strictly standardized. The in-house testing procedure used probably explains the interlaboratory variations observed.  相似文献   

14.
Curcumin (C) and its natural analogues demethoxycurcumin (dmC) and bisdemethoxycurcumin (bdmC), known for their potent anti-inflammatory, antioxidant, antimutagenic and anticarcinogenic effects, were tested for their possible inhibitory effects against seven cooked food mutagens (heterocyclic amines): 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1), 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2), 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and 2-amino-6-methyldipyrido[1,2-a:3',2'-d]imidazole (Glu-P-1), in both TA98 and TA100 strains of Salmonella typhimurium using Ames Salmonella/reversion assay in the presence of Aroclor induced rat liver S9 homogenate. In the present investigations, curcumin as well as its two natural analogues i.e., dmC and bdmC were found to be highly effective in suppressing genotoxicity of all the tested cooked food mutagens in a dose-dependent manner, in both the frame shift (TA98) as well as base pair mutation sensitive (TA100) strains of S. typhimurium. However, bdmC appeared to be a relatively less active antimutagen compared to C and dmC. More than 80% inhibition of mutagenicity was observed at 200 microg/plate in case of C and dmC in both TA98 and TA100 against all tested cooked food mutagens. Where as, bdmC showed 39-79% inhibition in TA100 and 60-80% inhibition in TA98, at a dose of 200 microg/plate. These findings warrant further biochemical, enzymatic and in vivo investigations in animal models as well as in humans to establish the chemoprotective effect of these agents against mutagenic heterocyclic amines found in cooked food.  相似文献   

15.
Cooking meat and fish at high temperature creates heterocyclic amines (HA) including 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ) and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). Several HA are mutagens in the Ames' S9/Salmonella assay. While PhIP is a substantial Ames' test mutagen, it is 1000-fold less active than the extraordinarily potent MeIQ. In contrast, MeIQ is significantly less mutagenic than PhIP in several mammalian cell assays, especially in repair-deficient Chinese hamster ovary (CHO) cells. HA are suspect human carcinogens on the basis of (i) epidemiological evidence, (ii) induction of tumors in rodents and monkeys, (iii) DNA adduct formation and (iv) mutagenic capacity. In this study, MeIQ and PhIP were significant mutagens at the S1 locus of co-cultivated human/hamster hybrid AL cells following metabolic activation by beta-napthoflavone (betaNF)-induced chick embryonic liver cultures (CELC). MeIQ was more mutagenic than PhIP in the CELC+AL cell assay. The mutant response curves increase with dose and then plateau (PhIP), or decrease (MeIQ). The inflections in these response curves coincide with dose-dependent decreases in cytochrome CYP1A1 activity. Molecular analysis of S1- mutants indicates that a substantial fraction, >65%, of the mutations induced by PhIP are deletions of 4.2 to 133 (Mbp); half are larger than 21 Mbp. Mutations induced by MeIQ were smaller, most (56%) being less than 5.7 Mbp. When appropriate metabolic activation is combined with a target locus, which can detect both small and large chromosomal mutations, both MeIQ and PhIP are significant mutagens and clastogens in repair proficient mammalian cells.  相似文献   

16.
Transgenic mouse assays have revealed that the mouse intestine, despite its resistance to carcinogenesis, is sensitive to the mutagenicity of some heterocyclic amines (HCAs). Little is known, however, about the level and localization of that sensitivity. We assessed the mutagenicity of four orally administered (20 mg/kg per day for 5 days) HCAs-2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) hydrochloride, 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ), and 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2) acetate-in the intestine of male MutaMice. Two weeks after the last administration, we isolated epithelium from the small intestine, cecum, and colon and analyzed lacZ and cII transgene mutations. PhIP increased the lacZ mutant frequency (MF) in all the samples, and in the small intestine, cII and lacZ MFs were comparable. In the cII gene, G:C to T:A and G:C to C:G transversions were characteristic PhIP-induced mutations (which has also been reported for the rat colon, where PhIP is carcinogenic). In the small intestine, PhIP increased the cII MF to four-fold that of the control, but IQ, MeIQ, and Trp-P-2 did not have a significant mutagenic effect. In the cecum, cII MFs induced by IQ and MeIQ were 1.9 and 2.7 times those in the control, respectively. The MF induced by MeIQ in the colon was 3.1 times the control value. Mutagenic potency was in the order PhIP>MeIQ>IQ; Trp-P-2 did not significantly increase the MF in any tissue. The cecum was the most susceptible organ to HCA mutagenicity.  相似文献   

17.
The fermented food, whole meal Natto, viscous polymeric material from Natto, Natto bean, cooked soya bean, and 28 bacterial isolates from Natto were studied for their binding capacity to foodborne mutagenic-carcinogenic heterocyclic amines. The mutagenic heterocyclic amines used were Trp-P-1 (3-amino-1,4-dimethyl-5H-pyrido(4,3-b)indole); Trp-P-2 (3-amino-1-methyl-5H-pyrido(4,3-b)indole); Glu-P-1 (2-amino-6-methyldipyrido(1,2-a:3'2'-d)imidazole); PhIP (2-amino-1-methyl-6-phenylimidazo(4,5-b)pyridine); IQ (2-amino-3-methylimidazo(4,5-f)quinoline); MeIQ (2-amino-3,4-dimethylimidazo(4,5-f)quinoxaline); MeIQx (2-amino-3,8-dimethylimidazo(4,5-f)quinoxaline); and MeAalphaC (2-amino-3-methyl-9H-pyrido(2,3)indole). The lyophilized Natto and other fractions of Natto exhibited high binding activity towards Trp-P-1, Trp-P-2, PhIP, and MeAalphaC, while Glu-P-1, IQ, and MeIQ were not effectively bound. The binding capacity of bacterial isolates (Bacillus natto) were isolate-mutagen dependent. Heat treated lyophilized cells, cell wall, and cytoplasmic contents of the bacterial isolate with the highest binding capacity were analyzed for their ability to bind different heterocyclic amines. The results indicate the importance of the cell wall in binding to heterocyclic amines, whereas the cytoplasmic contents were less effective. Heat-treated cells were not much different from that of viable cells in their binding. The impact of different factors, such as pH, incubation time, metal ions, different concentrations of sodium chloride and alcohol, various enzymes, and acetylation of mutagens on binding of Trp-P-1 and IQ, were discussed. The significance of the present results is also discussed from the viewpoint that Natto, a fermented food, is able to scavenge dietary mutagenic heterocyclic amines through binding.  相似文献   

18.
Female BALB/c mice were fed a low fat diet (1% safflower oil, by weight) or one supplemented with 25% (by weight) of beef fat or olive oil. The abilities of these diets to modify the in vitro and in vivo hepatic conversion of the dietary carcinogens aflatoxin B1, 2-amino-3, 4-dimethylimidazo[4,5-f]quinoline (MeIQ) and 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2) to bacterial mutagens was evaluated. Dietary olive oil appeared to increase the metabolism of both MeIQ and Trp-P-2 to bacterial mutagens in vivo using the intrasanguineous host-mediated assay. Feeding mice either of the high-fat diets increased hepatic conversion of these two compounds to bacterial mutagens in vitro. Dietary fat had no effect on the metabolism of aflatoxin B1. Subsequent experiments suggested that the in vivo effects of dietary olive oil on MeIQ and Trp-P-2 mutagenesis were due to the induction of hepatic enzyme activities rather than to increased rates of uptake of the carcinogen from the gut-lumen.  相似文献   

19.
Prostaglandin H synthase (PHS) is widely distributed in mammalian tissues and has the ability to oxidize a variety of mutagens and carcinogens. It may therefore play a key role in the metabolic activation of xenobiotics. The present study documents that highly purified PHS can be used in conjunction with 5-phenyl-4-pentenyl-1-hydroperoxide (PPHP), a relatively stable and non-mutagenic hydroperoxide substrate, for the metabolic activation of aromatic amines to mutagenic derivatives that can be detected in short-term Salmonella typhimurium mutagenesis assays. The PHS-based activation system alone was not mutagenic for these tester strains, nor were the test compounds significantly toxic for the bacteria over the concentration range tested. When used in conjunction with Salmonella strains TA98 and TA100 in a modified Ames assay, this system should prove useful for screening of a wide range of compounds for metabolic activation by this mammalian peroxidase. The potential broad utility of this purified PHS-dependent metabolic activation system was investigated by evaluating the activation of 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) and 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ), which are representative of a group of mutagenic and carcinogenic heterocyclic arylamines to which humans are exposed via their diet. Both IQ and MeIQ were activated by PHS to potent mutagens and confirm the utility of the PPHP/PHS system for the activation of premutagens. Whereas the extent of activation of aromatic amines by S9-based systems is significantly greater than for the PHS activation system described herein, PHS may play a significant role in target tissues in which it is present at significantly greater levels than P450 isoenzymes. Moreover, it is likely that the substrate specificity of PHS differs sufficiently from that of P450 isoenzymes so that PHS may activate some compounds that are not efficiently activated by mixed-function oxidase based systems.  相似文献   

20.
The mutagenic actions of many chemicals depend on the activities of bacterial "mutagenesis proteins", which allow replicative bypass of DNA lesions. Genes encoding these proteins occur on bacterial chromosomes and plasmids, often in the form of an operon (such as umuDC or mucAB) encoding two proteins. Many bacterial strains used in mutagenicity testing carry mutagenesis protein genes borne on plasmids, such as pKM101. Our objective was to introduce mutagenesis protein function into Escherichia coli strain DJ4309. This strain expresses recombinant human cytochrome P450 1A2 and NADPH-P450 reductase and carries out the metabolic conversion of aromatic and heterocyclic amines into DNA-reactive mutagens. We discovered that many mutagenesis-protein plasmids severely inhibit the response of strain DJ4309 to 2-amino-3,4-dimethylimid-azo[4,5-f]quinoline (MeIQ), a typical heterocyclic amine mutagen. Among many plasmids examined, one, pGY8294, a pSC101 derivative carrying the umuDC operon, did not inhibit MeIQ mutagenesis. Strain DJ4309 pGY8294 expresses active mutagenesis proteins, as shown by its response to mutagens such as 1-nitropyrene and 4-nitroquinoline 1-oxide (4-NQO), and is as sensitive as the parent strain DJ4309 to P450-dependent mutagens, such as MeIQ and 1-aminopyrene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号