首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Understanding of how the eukaryotic genome is packaged into chromatin and what the functional consequences of this organization are has begun to emerge recently. The concept of ‘chromatin domains’ — the topologically independent structural unit — is the basis of higher order chromatin organization. The idea that this structural unit may also coincide with the functional unit, offers a useful framework in dissecting the structure-function relationship. Boundaries that define these domains have been identified and several assays have been developed to test themin vivo. We have used genetic means to identify and analyse such boundary elements in the bithorax complex ofDrosophila melanogaster. In this review we discuss chromatin domain boundaries identified in several systems using different means. Although there is no significant sequence conservation among various chromatin domain boundaries, these elements show functional conservation across the species. Finally, we discuss mechanistic aspects of how chromatin domain boundaries may function in organizing and regulating eukaryotic genome.  相似文献   

2.
3.
Hox genes are necessary for proper morphogenesis and organization of various body structures along the anterior-posterior body axis. These genes exist in clusters and their expression pattern follows spatial and temporal co-linearity with respect to their genomic organization. This colinearity is conserved during evolution and is thought to be constrained by the regulatory mechanisms that involve higher order chromatin structure. Earlier studies, primarily in Drosophila, have illustrated the role of chromatin-mediated regulatory processes, which include chromatin domain boundaries that separate the domains of distinct regulatory features. In the mouse HoxD complex, Evx2 and Hoxd13 are located ~ 9 kb apart but have clearly distinguishable temporal and spatial expression patterns. Here, we report the characterization of a chromatin domain boundary element from the Evx2-Hoxd13 region that functions in Drosophila as well as in mammalian cells. We show that the Evx2-Hoxd13 region has sequences conserved across vertebrate species including a GA repeat motif and that the Evx2-Hoxd13 boundary activity in Drosophila is dependent on GAGA factor that binds to the GA repeat motif. These results show that Hox genes are regulated by chromatin mediated mechanisms and highlight the early origin and functional conservation of such chromatin elements.  相似文献   

4.
Chromatin domain boundary elements demarcate independently regulated domains of eukaryotic genomes. While a few such boundary sequences have been studied in detail, only a small number of proteins that interact with them have been identified. One such protein is the boundary element-associated factor (BEAF), which binds to the scs' boundary element of Drosophila melanogaster. It is not clear, however, how boundary elements function. In this report we show that BEAF is associated with the nuclear matrix and map the domain required for matrix association to the middle region of the protein. This region contains a predicted coiled-coil domain with several potential sites for posttranslational modification. We demonstrate that the DNA sequences that bind to BEAF in vivo are also associated with the nuclear matrix and colocalize with BEAF. These results suggest that boundary elements may function by tethering chromatin to nuclear architectural components and thereby provide a structural basis for compartmentalization of the genome into functionally independent domains.  相似文献   

5.
6.
7.
The human cancer susceptibility gene, BRCA2, functions in double-strand break repair by homologous recombination, and it appears to function via interaction of a repetitive region (“BRC repeats”) with RAD-51. A putatively simpler homolog, dmbrca2, was identified in Drosophila melanogaster recently and also affects mitotic and meiotic double-strand break repair. In this study, we examined patterns of repeat variation both within Drosophila pseudoobscura and among available Drosophila genome sequences. We identified extensive variation within and among closely related Drosophila species in BRC repeat number, to the extent that variation within this genus recapitulates the extent of variation found across the entire animal kingdom. We describe patterns of evolution across species by documenting recent repeat expansions (sometimes in tandem arrays) and homogenizations within available genome sequences. Overall, we have documented patterns and modes of evolution in a new model system of a gene which is important to human health.  相似文献   

8.
9.
A widely distributed "CAT" family of repetitive DNA sequences   总被引:1,自引:0,他引:1  
The yeast genome contains a family of repetitive sequences consisting primarily of a tandemly arranged trinucleotide, CAT, or a closely related CGT sequence. To characterize similar sequences in divergent organisms, a previously isolated "CAT" sequence was used to isolate homologous genomic clones from a human cell line, an insect and a higher plant. Sequence analyses show that comparable repetitive sequences are widely distributed and may be present in all eukaryotic genomes. In situ hybridization analyses indicate that in yeast, the CAT elements are dispersed among all the chromosomes, and a more detailed analysis in Drosophila indicates that at least one of these sequences maps on the X chromosome between known genetic loci which are actively expressed. Repeated searches of yeast cDNA libraries indicate that these CAT clusters are not expressed but substantial effects on the expression of a cloned gene strongly suggest that they play an important role in gene regulation.  相似文献   

10.
11.
12.
The conservation of hox genes as well as their genomic organization across the phyla suggests that this system of anterior–posterior axis formation arose early during evolution and has come under strong selection pressure. Studies in the split Hox cluster of Drosophila have shown that proper expression of hox genes is dependent on chromatin domain boundaries that prevent inappropriate interactions among different types of cis-regulatory elements. To investigate whether boundary function and their role in regulation of hox genes is conserved in insects with intact Hox clusters, we used an algorithm to locate potential boundary elements in the Hox complex of mosquito, Anopheles gambiae. Several potential boundary elements were identified that could be tested for their functional conservation. Comparative analysis revealed that like Drosophila, the bithorax region in A. gambiae contains an extensive array of boundaries and enhancers organized into domains. We analysed a subset of candidate boundary elements and show that they function as enhancer blockers in Drosophila. The functional conservation of boundary elements from mosquito in fly suggests that regulation of hox genes involving chromatin domain boundaries is an evolutionary conserved mechanism and points to an important role of such elements in key developmentally regulated loci.  相似文献   

13.
DNA gel-blot and in situ hybridization with genome-specific repeated sequences have proven to be valuable tools in analyzing genome structure and relationships in species with complex allopolyploid genomes such as hexaploid oat (Avena sativa L., 2n = 6x = 42; AACCDD genome). In this report, we describe a systematic approach for isolating genome-, chromosome-, and region-specific repeated and low-copy DNA sequences from oat that can presumably be applied to any complex genome species. Genome-specific DNA sequences were first identified in a random set of A. sativa genomic DNA cosmid clones by gel-blot hybridization using labeled genomic DNA from different Avena species. Because no repetitive sequences were identified that could distinguish between the A and D gneomes, sequences specific to these two genomes are refereed to as A/D genome specific. A/D or C genome specific DNA subfragments were used as screening probes to identify additional genome-specific cosmid clones in the A. sativa genomic library. We identified clustered and dispersed repetitive DNA elements for the A/D and C genomes that could be used as cytogenetic markers for discrimination of the various oat chromosomes. Some analyzed cosmids appeared to be composed entirely of genome-specific elements, whereas others represented regions with genome- and non-specific repeated sequences with interspersed low-copy DNA sequences. Thus, genome-specific hybridization analysis of restriction digests of random and selected A. sativa cosmids also provides insight into the sequence organization of the oat genome.  相似文献   

14.
Ectopic exchange between transposable elements or other repetitive sequences along a chromosome can produce chromosomal inversions. As a result, genome sequence studies typically find sequence similarity between corresponding inversion breakpoint regions. Here, we identify and investigate the breakpoint regions of the X chromosome inversion distinguishing Drosophila mojavensis and Drosophila arizonae. We localize one inversion breakpoint to 13.7 kb and localize the other to a 1-Mb interval. Using this localization and assuming microsynteny between Drosophila melanogaster and D. arizonae, we pinpoint likely positions of the inversion breakpoints to windows of less than 3000 bp. These breakpoints define the size of the inversion to approximately 11 Mb. However, in contrast to many other studies, we fail to find significant sequence similarity between the 2 breakpoint regions. The localization of these inversion breakpoints will facilitate future genetic and molecular evolutionary studies in this species group, an emerging model system for ecological genetics.  相似文献   

15.
16.
Genomic patterns of occurrence of the transposable element hobo are polymorphic in the sibling species Drosophila melanogaster and D. simulans. Most tested strains of both species have apparently complete (3.0 kb) and smaller hobo elements (H lines), but in both species some strains completely lack such canonical hobo elements (E lines). The occurrence of H and E lines in D. simulans as well as in D. melanogaster implies that an hypothesis of recent introduction in the latter species is inadequate to explain the phylogenetic occurrence of hobo. Particular internally deleted elements, the approximately 1.5 kb Th1 and Th2 elements, are abundant in many lines of D. melanogaster, and an analogous 1.1 kb internally deleted element, h del sim, is abundant in most lines of D. simulans. Besides the canonical hobo sequences, both species (and their sibling species D. sechellia and D. mauritiana) have many hobo-hybridizing sequences per genome that do not appear to be closely related to the canonical hobo sequence.  相似文献   

17.
The genomic organization of two parasitic wasps was analyzed by DNA reassociation. Cot curves revealed a pattern with three types of components. A highly repetitive DNA, accounting for 15 to 25% of the genome, was identified as satellite DNA. The moderately repetitive DNA corresponds to 26 to 42% of the genome in both species, and shows large variations in complexity, repetitive frequency and a number of sub-components between males and females. These variations are seen as resulting from DNA amplification during somatic and sexual differentiation. Dot blot analyses show that such DNA amplifications concern several types of structural and regulatory genes. The presence of repeated mobile elements was studied by the Roninson method to compare the repeated sequence patterns of Diadromus pulchellus and Eupelmus vuilleti with those of Drosophila melanogaster. The occurrence and organization of mobile elements in these Hymenoptera differ from those of the neighboring order of Diptera. The repetitive and unique components define very large genomes (1 to 3 × 109 base pairs). The genomic organization in Parasitica appears to be an extreme drosophilan type. We propose that the germinal genome of these parasitic wasps is primarily composed of satellite DNA blocks and very long stretches of unique sequences, separated by a few repeated and/or variously deleted, interspersed elements of each mobile element family.  相似文献   

18.
An oligonucleotide probe was used to isolate yeast genomic clones containing DNA sequences with repetitive elements consisting primarily of a tandemly arranged trinucleotide, CAT. Hybridization analyses estimate that the yeast genome contains 40-50 CAT clusters, representing the first repetitive DNA sequence family found in yeast. Sequence analyses show short spacers between the CAT repeats consisting of closely related trinucleotides, primarily CGT. Some of the CAT clusters are located in longer repeating elements with lengths of 7 nucleotides or more. In one case a three-times-repeated 27-nucleotide sequence bears striking homology to the 21-base pair repeat region of the mammalian simian virus 40 promoter element. Hybridization studies further suggest that the "CAT" sequences may be widely dispersed in many diverse organisms including Escherichia coli, Drosophila, and man.  相似文献   

19.
The X chromosome plays an important role in both adaptive evolution and speciation. We used a molecular evolutionary screen of X-linked genes potentially involved in reproductive isolation in mice to identify putative targets of recurrent positive selection. We then sequenced five very rapidly evolving genes within and between several closely related species of mice in the genus Mus. All five genes were involved in male reproduction and four of the genes showed evidence of recurrent positive selection. The most remarkable evolutionary patterns were found at Testis-specific gene a8 (Tsga8), a spermatogenesis-specific gene expressed during postmeiotic chromatin condensation and nuclear transformation. Tsga8 was characterized by extremely high levels of insertion-deletion variation of an alanine-rich repetitive motif in natural populations of Mus domesticus and M. musculus, differing in length from the reference mouse genome by up to 89 amino acids (27% of the total protein length). This population-level variation was coupled with striking divergence in protein sequence and length between closely related mouse species. Although no clear orthologs had previously been described for Tsga8 in other mammalian species, we have identified a highly divergent hypothetical gene on the rat X chromosome that shares clear orthology with the 5' and 3' ends of Tsga8. Further inspection of this ortholog verified that it is expressed in rat testis and shares remarkable similarity with mouse Tsga8 across several general features of the protein sequence despite no conservation of nucleotide sequence across over 60% of the rat-coding domain. Overall, Tsga8 appears to be one of the most rapidly evolving genes to have been described in rodents. We discuss the potential evolutionary causes and functional implications of this extraordinary divergence and the possible contribution of Tsga8 and the other four genes we examined to reproductive isolation in mice.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号