首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
We show, using gel retardation, that crude Escherichia coli cell extracts contain a protein which binds specifically to DNA fragments carrying either end of the phage Mu genome. We have identified this protein as Fis, a factor involved in several site-specific recombinational switches. Furthermore, we show that induction of a Mucts62 prophage in a fis lysogen occurs at a lower temperature than that of a wild-type strain, and that spontaneous induction of Mucts62 is increased in the fis mutant. DNasel footprinting using either crude extracts or purified Fis indicate that binding on the left end of Mu occurs at a site which overlaps a weak transposase binding site. Thus, Fis may modulate Mu growth by influencing the binding of transposase, or other proteins, to the transposase binding site(s), in a way similar to its influence on Xis binding in phage lambda.  相似文献   

10.
11.
12.
13.
The Fis protein: it''s not just for DNA inversion anymore   总被引:36,自引:0,他引:36  
  相似文献   

14.
Bacteriophage Mu DNA was labeled after induction in the presence of [2-(3)H]adenine or [8-(3)H]adenine. Both Mu mom(+).dam(+) DNA and Mu mom(-).dam(+) DNA have similar N(6)-methyladenine (MeAde) contents, as well as similar frequencies of MeAde nearest neighbors. Both DNAs are sensitive to in vitro cleavage by R.DpnI but resistant to cleavage by R.DpnII. These results indicate that the mom(+) protein does not alter the sequence specificity of the host dam(+) methylase to produce MeAde at new sites. However, we have discovered a new modified base, denoted A(x), in Mu mom(+).dam(+) DNA; approximately 15% of the adenine residues are modified to A(x). Although the precise nature of the modification is not yet defined, analysis by electrophoresis and chromatography indicates that the N(6)-amino group is not the site of modification, and that the added moiety contains a free carboxyl group. A(x) is not present in Mu mom(+).dam(+) or Mu mom(-).dam(+) phage DNA or in cellular DNA from uninduced Mu mom(+).dam(+) lysogens. These results suggest that expression of the dam(+) and mom(+) genes are required for the A(x) modification and that this modification is responsible for protecting Mu DNA against certain restriction nucleases. Mu mom(+).dam(-) DNA and Mu mom(-).dam(-) DNA contain a very low level of MeAde (ca. 1 MeAde per 5,000 adenine residues). Since the only nearest neighbor to MeAde appears to be cytosine, we suggest that the methylated sequence is 5'... C-A(*)-C... 3' and that this methylation is mediated by the EcoK modification enzyme.  相似文献   

15.
16.
F G Wulczyn  R Kahmann 《Cell》1991,65(2):259-269
Translation of the bacteriophage Mu mom gene is positively regulated by the phage Com protein. We report here that purified Com protein specifically stimulates mom gene expression in vitro. Furthermore, Com is shown to bind a site in the mom translational initiation region (TIR) in a sequence-specific manner. In vitro RNA footprint experiments have been used to define the Com-binding site and to study mRNA secondary structure in the mom TIR. Com binding is shown to correlate with a conformational change in the mom TIR both in vivo and in vitro. The role of secondary structure was further examined by testing the effects of mutations in the TIR on translation and stimulation. The results support a model for translational stimulation in which Com binding induces a conformational change in the mom mRNA, thereby enhancing ribosome binding.  相似文献   

17.
P Heisig  R Kahmann 《Gene》1986,43(1-2):59-67
  相似文献   

18.
Bacteriophage B278 has been characterized and compared with Mu, the only phage known to produce random mutations in E. coli. Although both phages are morphologically indistinguishable and have a similar host range, they clearly differ at both the protein and the DNA level. B278 apparently possesses a DNA protection mechanism that is different from the mom system described for Mu.  相似文献   

19.
20.
The mom gene of bacteriophage Mu encodes an enzyme that converts adenine to N(6)-(1-acetamido)-adenine in the phage DNA and thereby protects the viral genome from cleavage by a wide variety of restriction endonucleases. Mu-like prophage sequences present in Haemophilus influenzae Rd (FluMu), Neisseria meningitidis type A strain Z2491 (Pnme1) and H. influenzae biotype aegyptius ATCC 11116 do not possess a Mom-encoding gene. Instead, at the position occupied by mom in Mu they carry an unrelated gene that encodes a protein with homology to DNA adenine N(6)-methyltransferases (hin1523, nma1821, hia5, respectively). Products of the hin1523, hia5 and nma1821 genes modify adenine residues to N(6)-methyladenine, both in vitro and in vivo. All of these enzymes catalyzed extensive DNA methylation; most notably the Hia5 protein caused the methylation of 61% of the adenines in λ DNA. Kinetic analysis of oligonucleotide methylation suggests that all adenine residues in DNA, with the possible exception of poly(A)-tracts, constitute substrates for the Hia5 and Hin1523 enzymes. Their potential 'sequence specificity' could be summarized as AB or BA (where B = C, G or T). Plasmid DNA isolated from Escherichia coli cells overexpressing these novel DNA methyltransferases was resistant to cleavage by many restriction enzymes sensitive to adenine methylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号