首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In macroscopic organisms, aging is often obvious; in single-celled organisms, where there is the greatest potential to identify the molecular mechanisms involved, identifying and quantifying aging is harder. The primary results in this area have come from organisms that share the traits of a visibly asymmetric division and an identifiable juvenile phase. As reproductive aging must require a differential distribution of aged and young components between parent and offspring, it has been postulated that organisms without these traits do not age, thus exhibiting functional immortality. Through automated time-lapse microscopy, we followed repeated cycles of reproduction by individual cells of the model organism Escherichia coli, which reproduces without a juvenile phase and with an apparently symmetric division. We show that the cell that inherits the old pole exhibits a diminished growth rate, decreased offspring production, and an increased incidence of death. We conclude that the two supposedly identical cells produced during cell division are functionally asymmetric; the old pole cell should be considered an aging parent repeatedly producing rejuvenated offspring. These results suggest that no life strategy is immune to the effects of aging, and therefore immortality may be either too costly or mechanistically impossible in natural organisms.  相似文献   

3.
The nef gene of human and simian immunodeficiency viruses is critical for AIDS pathogenesis. Its function in vivo is unknown, but in vitro natural isolates of Nef down-regulate expression of the cell surface CD4 molecule, a component of the T cell antigen receptor and the viral receptor, by accelerating its endocytosis. We have used chimeric proteins comprised of the natural HIV-1 NA7 Nef fused to a strongly fluorescing mutant of green fluorescent protein (GFP) to correlate Nef function with intracellular localization in human CD4-positive Jurkat T cells. The NA7-GFP fusion protein co-localizes with components of the clathrin coat, including clathrin and the beta-subunit of the AP-2 adaptor protein complex, at discrete locations that are consistent with the normal cellular distribution of clathrin coats at the plasma membrane. The NA7-GFP protein is also found in the perinuclear region of the cell, which is likely to reflect the Golgi apparatus. Evidence from a CD4-negative fibroblast cell line indicates that co-localization of NA7-GFP with components of the clathrin coat does not require expression of the CD4 molecule. Analysis of a large panel of chimeric molecules containing mutant Nef moieties demonstrated that the N-terminal membrane targeting signal cooperates with additional element(s) in the disordered loops in the Nef molecule to co-localize the Nef protein with AP-2 adaptor complexes at the cell margin. This localization of NA7-GFP correlates with, but is not sufficient for, down-regulation of surface CD4 and at least one additional function of Nef is required. In T cells co-expressing CD4 and NA7-GFP, CD4 at the cell surface is redistributed into a discrete pattern that co-localizes with that of NA7-GFP. Our observations place NA7-GFP in physical proximity to AP-2-containing clathrin coat at the plasma membrane and imply that Nef interacts, either directly or indirectly, with a component of the AP-2-containing coat at this location. This evidence supports a model whereby Nef recruits CD4 to the endocytic machinery via AP-2-containing clathrin coats at the plasma membrane.  相似文献   

4.
Kiselyov K  Wang X  Shin DM  Zang W  Muallem S 《Cell calcium》2006,40(5-6):451-459
The highly polarized nature of epithelial cells in exocrine glands necessitates targeting, assembly into complexes and confinement of the molecules comprising the Ca(2+) signaling apparatus, to cellular microdomains. Such high degree of polarized localization has been shown for all Ca(2+) signaling molecules tested, including G protein coupled receptors and their associated proteins, Ca(2+) pumps, Ca(2+) influx channels at the plasma membrane and Ca(2+) release channels in the endoplasmic reticulum. Although the physiological significance of polarized Ca(2+) signaling is clear, little is known about the mechanism of targeting, assembly and retention of Ca(2+) signaling complexes in cellular microdomains. The present review attempts to summarize the evidence in favor of polarized expression of Ca(2+) signaling proteins at the apical pole of secretory cells with emphasis on the role of scaffolding proteins in the assembly and function of the Ca(2+) signaling complexes. The consequence of polarized enrichment of Ca(2+) signaling complexes at the apical pole is generation of an apical to basal pole gradient of cell responsiveness that, at low physiological agonist concentrations, limits Ca(2+) spikes to the apical pole, and when a Ca(2+) wave occurs, it always propagates from the apical to the basal pole. Our understanding of Ca(2+) signaling in microdomains is likely to increase rapidly with the application of techniques to controllably and selectively disrupt components of the complexes and apply high resolution recording techniques, such as TIRF microscopy to this problem.  相似文献   

5.
6.
Melloy PG  Holloway SL 《Genetics》2004,167(3):1079-1094
The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase in the ubiquitin-mediated proteolysis pathway (UMP). To understand how the APC/C was targeted to its substrates, we performed a detailed analysis of one of the APC/C components, Cdc23p. In live cells, Cdc23-GFP localized to punctate nuclear spots surrounded by homogenous nuclear signal throughout the cell cycle. These punctate spots colocalized with two outer kinetochore proteins, Slk19p and Okp1p, but not with the spindle pole body protein, Spc42p. In late anaphase, the Cdc23-GFP was also visualized along the length of the mitotic spindle. We hypothesized that spindle checkpoint activation may affect the APC/C nuclear spot localization. Localization of Cdc23-GFP was disrupted upon nocodazole treatment in the kinetochore mutant okp1-5 and in the cdc20-1 mutant. Cdc23-GFP nuclear spot localization was not affected in the ndc10-1 mutant, which is defective in spindle checkpoint function. Additional studies using a mad2Delta strain revealed a microtubule dependency of Cdc23-GFP spot localization, whether or not the checkpoint response was activated. On the basis of these data, we conclude that Cdc23p localization was dependent on microtubules and was affected by specific types of kinetochore disruption.  相似文献   

7.
Adenoviruses are common pathogens. The localization of their receptors coxsackievirus and adenovirus receptor, and desmoglein-2 in cell-cell junction complexes between polarized epithelial cells represents a major challenge for adenovirus infection from the apical surface. Structural proteins including hexon, penton base and fiber are excessively produced in serotype 5 adenovirus (Ad5)-infected cells. We have characterized the composition of structural protein complexes released from Ad5 infected cells and their capacity in remodeling cell-cell junction complexes. Using T84 cells as a model for polarized epithelium, we have studied the effect of Ad5 structural protein complexes in remodeling cell-cell junctions in polarized epithelium. The initial Ad5 infection in T84 cell culture was inefficient. However, progressive distortion of cell-cell junction in association with fiber release was evident during progression of Ad5 infection. Incubation of T84 cell cultures with virion-free supernatant from Ad5 infected culture resulted in distortion of cell-cell junctions and decreased infectivity of Ad5-GFP vector. We used gel filtration chromatography to fractionate fiber containing virion–free supernatant from Ad5 infected culture supernatant. Fiber containing fractions were further characterized for their capacity to inhibit the infection of Ad5-GFP vector, their composition in adenovirus structural proteins using western blot and LC-MS/MS and their capacity in remolding cell-cell junctions. Fiber molecules in complexes containing penton base and hexon, or mainly hexon were identified. Only the fiber complexes with relatively high content of penton base, but not the fiber-hexon complexes with low penton base, were able to penetrate into T84 cells and cause distortion of cell-cell junctions. Our findings suggest that these two types of fiber complexes may play different roles in adenoviral infection.  相似文献   

8.
9.
A few well-characterized protein assemblies aside, little is known about the topology and interfaces of multiconstituent protein complexes. Here we report on a novel indirect strategy for low-resolution topology mapping of protein complexes. Following crosslinking, purified protein complexes are subjected to chemical cleavage with cyanogen bromide (CNBr) and the resulting fragments are resolved by 2-D electrophoresis. The side-by-side comparison of a thus generated and a 2-D CNBr fragment map obtained from uncrosslinked material reveals candidate gel spots harboring crosslinked CNBr fragments. In-gel trypsinization and MALDI MS analysis of these informative spots identify the underlying crosslinked CNBr fragments based on unmodified tryptic peptides. Matching the cumulative theoretical molecular mass and predicted pI of these crosslinked CNBr fragments with original gel spot coordinates is required for confident crosslink assignment. The above strategy was successfully validated with the Escherichia coli RNA polymerase (RNAP) core complex and subsequently applied to query the quaternary structure of components of the yeast Skp1-Cdc53/Cullin-F box (SCF) ubiquitin ligase complex. This protocol requires low picomole sample quantities, can be applied to multisubunit protein complexes, and does not rely on specialized data mining software.  相似文献   

10.
Membrane proteins of Gram-negative bacteria are key molecules that interface the cells with the environment. Despite recent proteomic identification of numerous oligomer proteins in the Escherichia coli cell envelope, the protein complex of E. coli membrane proteins and their peripherally associated proteins remain ill-defined. In the current study, we systematically analyze the subproteome of E. coli cell envelope enriched in sarcosine-insoluble fraction (SIF) and sarcosine-soluble fraction (SSF) by using proteomic methodologies. One hundred and four proteins out of 184 spots on 2D electrophoresis gels are identified, which includes 31 outer membrane proteins (OMPs). Importantly, our further proteomic studies reveal a number of previously unrecognized membrane-interacting protein complexes, such as the complex consisting of OmpW and fumarate reductase. This established complete proteomic profile of E. coli envelope also sheds new insight into the function(s) of E. coli outer envelope.  相似文献   

11.
Angiogenesis is an essential process in physiological and pathological processes and is well-regulated to maintain the cellular homeostasis by balancing the endothelial cells in proliferation and apoptosis. Angiopoietin-1 (Ang1) regulates angiogenesis as a ligand of Tie 2 receptor tyrosine kinase. However, the regulation pathways are not well-understood. To date, only a few of the signaling molecules involved in the Tie 2 receptor tyrosine kinase-mediated angiogenesis have been identified. In this study, we systematically identified tyrosine-phosphorylated proteins in Ang1-induced signaling cascade in human umbilical vein endothelial cells (HUVECs), employing proteomic analyses combining two-dimensional gel electrophoresis, Western analysis using phosphotyrosine antibody and mass spectrometry (MALDI-TOF MS and nanoLC-ESI-q-TOF tandem MS). We report here the identification, semiquantitative analysis, and kinetic changes of tyrosine-phosphorylated proteins in response to Ang1 in HUVECs and identified 66 proteins among 69 protein spots showing significant changes. Of these, p54nrb was validated as a molecule involved in cell migration. These results suggest that Ang1 induces stabilization of neo-vessel network by regulating the phosphorylations of metabolic and structural proteins.  相似文献   

12.
Polarized cells, polar actions.   总被引:7,自引:2,他引:5       下载免费PDF全文
The recognition of polar bacterial organization is just emerging. The examples of polar localization given here are from a variety of bacterial species and concern a disparate array of cellular functions. A number of well-characterized instances of polar localization of bacterial proteins, including the chemoreceptor complex in both C. crescentus and E. coli, the maltose-binding protein in E. coli, the B. japonicum surface attachment proteins, and the actin tail of L. monocytogenes within a mammalian cell, involve proteins or protein complexes that facilitate bacterial interaction with the environment, either the extracellular milieux or that within a plant or mammalian host. The significance of this observation remains unclear. Polarity in bacteria poses many problems, including the necessity for a mechanism for asymmetrically distributing proteins as well as a mechanism by which polar localization is maintained. Large structures, such as a flagellum, are anchored at the pole by means of the basal body that traverses the peptidoglycan wall. But for proteins and small complexes, whether in the periplasm or the membrane, one must invoke a mechanism that prevents the diffusion of these proteins away from the cell pole. Perhaps the periplasmic proteins are retained at the pole by the presence of the periseptal annulus (35). The constraining features for membrane components are not known. For large aggregates, such as the clusters of MCP, CheA, and CheW complexes, perhaps the size of the aggregate alone prevents displacement. In most cases of cellular asymmetry, bacteria are able to discriminate between the new pole and the old pole and to utilize this information for localization specificity. The maturation of new pole to old pole appears to be a common theme as well. Given numerous examples reported thus far, we propose that bacterial polarity displays specific rules and is a more general phenomenon than has been previously recognized.  相似文献   

13.
Rang CU  Peng AY  Chao L 《Current biology : CB》2011,21(21):1813-1816
Single-celled organisms dividing by binary fission were thought not to age [1-4]. A 2005 study by Stewart et al. [5] reversed the dogma by demonstrating that Escherichia coli were susceptible to aging. A follow-up study by Wang et al. [6] countered those results by demonstrating that E. coli cells trapped in microfluidic devices are able to sustain robust growth without aging. The present study reanalyzed these conflicting data by applying a population genetic model for aging in bacteria [7]. Our reanalysis showed that in E. coli, as predicted by the model, (1) aging and rejuvenation occurred simultaneously in a population; (2) lineages receiving sequentially the maternal old pole converged to a stable attractor state; (3) lineages receiving sequentially the maternal new pole converged to an equivalent but separate attractor state; (4) cells at the old pole attractor had a longer doubling time than ones at the new pole attractor; and (5) the robust growth state identified by Wang et al. corresponds to our predicted attractor for lineages harboring the maternal old pole. Thus, the previous data, rather than opposing each other, together provide strong evidence for bacterial aging.  相似文献   

14.
The establishment of cell polarity was examined in the budding yeast, S. cerevisiae. The distribution of a polarized protein, the SPA2 protein, was followed throughout the yeast cell cycle using synchronized cells and cdc mutants. The SPA2 protein localizes to a patch at the presumptive bud site of G1 cells. Later it concentrates at the bud tip in budded cells. At cytokinesis, the SPA2 protein is at the neck between the mother and daughter cells. Analysis of unbudded haploid cells has suggested a series of events that occurs during G1. The SPA2 patch is established very early in G1, while the spindle pole body residues on the distal side of the nucleus. Later, microtubules emanating from the spindle pole body intersect the SPA2 crescent, and the nucleus probably rotates towards the SPA2 patch. By middle G1, most cells contain the SPB on the side of the nucleus proximal to the SPA2 patch, and a long extranuclear microtubule bundle intersects this patch. We suggest that a microtubule capture site exists in the SPA2 staining region that stabilizes the long microtubule bundle; this capture site may be responsible for rotation of the nucleus. Cells containing a polarized distribution of the SPA2 protein also possess a polarized distribution of actin spots in the same region, although the actin staining is much more diffuse. Moreover, cdc4 mutants, which form multiple buds at the restrictive temperature, exhibit simultaneous staining of the SPA2 protein and actin spots in a subset of the bud tips. spa2 mutants contain a polarized distribution of actin spots, and act1-1 and act1-2 mutants often contain a polarized distribution of the SPA2 protein suggesting that the SPA2 protein is not required for localization of the actin spots and the actin spots are not required for localization of the SPA2 protein. cdc24 mutants, which fail to form buds at the restrictive temperature, fail to exhibit polarized localization of the SPA2 protein and actin spots, indicating that the CDC24 protein is directly or indirectly responsible for controlling the polarity of these proteins. Based on the cell cycle distribution of the SPA2 protein, a "cytokinesis tag" model is proposed to explain the mechanism of the non-random positioning of bud sites in haploid yeast cells.  相似文献   

15.
Nod, a nonmotile kinesin-like protein, plays a critical role in segregating achiasmate chromosomes during female meiosis. In addition to localizing to oocyte chromosomes, we show that functional full-length Nod-GFP (Nod(FL)-GFP) localizes to the posterior pole of the oocyte at stages 9-10A, as does kinesin heavy chain (KHC), a plus end-directed motor. This posterior localization is abolished in grk mutants that no longer maintain the microtubule (MT) gradient in the oocyte. To test the hypothesis that Nod binds to the plus ends of MTs, we expressed and purified both full-length Nod (Nod(FL)) and a truncated form of Nod containing only the motor-like domain (Nod318) from Escherichia coli and assessed their interactions with MTs in vitro. Both Nod(FL) and Nod318 demonstrate preferential binding to the ends of the MTs, displaying a strong preference for binding to the plus ends. When Nod318-GFP:MT collision complexes were trapped by glutaraldehyde fixation, the preference for binding to plus ends versus minus ends was 17:1. Nod(FL) and Nod318 also promote MT polymerization in vitro in a time-dependent manner. The observation that Nod is preferentially localized to the plus ends of MTs and stimulates MT polymerization suggests a mechanism for its function.  相似文献   

16.
The movement protein of alfalfa mosaic virus was expressed in Escherichia coli and purified by cation exchange chromatography. The purified protein bound single-stranded RNA cooperatively in a biphasic manner. At protein saturation, RNA/protein complexes (designated 'primary complexes') were detected by a nitrocellulose-retention assay within 1 min of mixing, both at 4 and 22 degrees C. In contrast, an incubation of 30 min at 22 degrees C was necessary to obtain electrophoretically retarded complexes ('stabilized complexes'), containing a large number of protein molecules bound stably to each molecule of RNA. Stabilization did not take place at 4 degrees C. The rate of formation of the primary complexes was strongly dependent on protein concentration, and thus appeared limited by a bimolecular interaction. In contrast, the rate of stabilization was independent of protein concentration, suggesting that this process consisted of a rearrangement of the primary complexes without binding of additional protein molecules. In agreement with this suggestion, the amount of complexed RNA at equilibrium was the same when assayed by nitrocellulose retention and by electrophoretic retardation. The possibility that these peculiar kinetics could be caused by the presence of Tween 20 in the incubation media is discussed.  相似文献   

17.
18.
Tandem affinity purification is the principal method for purifying and identifying stable protein complexes system-wide in whole cells. Although highly effective, this approach is laborious and impractical in organisms where genetic manipulation is not possible. Here, we propose a novel "tagless" strategy that combines multidimensional separation of endogenous complexes with mass spectrometric monitoring of their composition. In this procedure, putative protein complexes are identified based on the comigration of collections of polypeptides through multiple orthogonal separation steps. We present proof-of-principle evidence for the feasibility of key aspects of this strategy. A majority of Escherichia coli proteins are shown to remain in stable complexes during fractionation of a crude extract through three chromatographic steps. We also demonstrate that iTRAQ reagent-based tracking can quantify relative migration of polypeptides through chromatographic separation media. LC MALDI MS and MS/MS analysis of the iTRAQ-labeled peptides gave reliable relative quantification of 37 components of 13 known E. coli complexes: 95% of known complex components closely co-eluted and 57% were automatically grouped by a prototype computational clustering method. With further technological improvements in each step, we believe this strategy will dramatically improve the efficiency of the purification and identification of protein complexes in cells.  相似文献   

19.
He MM  Clugston SL  Honek JF  Matthews BW 《Biochemistry》2000,39(30):8719-8727
The metalloenzyme glyoxalase I (GlxI) converts the nonenzymatically produced hemimercaptal of cytotoxic methylglyoxal and glutathione to nontoxic S-D-lactoylglutathione. Human GlxI, for which the structure is known, is active in the presence of Zn(2+). Unexpectedly, the Escherichia coli enzyme is inactive in the presence of Zn(2+) and is maximally active with Ni(2+). To understand this difference in metal activation and also to obtain a representative of the bacterial enzymes, the structure of E. coli Ni(2+)-GlxI has been determined. Structures have also been determined for the apo enzyme as well as complexes with Co(2+), Cd(2+), and Zn(2+). It is found that each of the protein-metal complexes that is catalytically active has octahedral geometry. This includes the complexes of the E. coli enzyme with Ni(2+), Co(2+), and Cd(2+), as well as the structures reported for the human Zn(2+) enzyme. Conversely, the complex of the E. coli enzyme with Zn(2+) has trigonal bipyramidal coordination and is inactive. This mode of coordination includes four protein ligands plus a single water molecule. In contrast, the coordination in the active forms of the enzyme includes two water molecules bound to the metal ion, suggesting that this may be a key feature of the catalytic mechanism. A comparison of the human and E. coli enzymes suggests that there are differences between the active sites that might be exploited for therapeutic use.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号