首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
2.
3.
During recent years, miRNAs have been shown to play important roles in the regulation of gene expression. Accordingly, much effort has been put into the discovery of novel uncharacterized miRNAs in various organisms. miRNAs are structurally defined by a hairpin-loop structure recognized by the two-step processing apparatus, Drosha and Dicer, necessary for the production of mature ∼22-nucleotide miRNA guide strands. With the emergence of high-throughput sequencing applications, tools have been developed to identify miRNAs and profile their expression based on sequencing reads. However, as the read depth increases, false-positive predictions increase using established algorithms, underscoring the need for more stringent approaches. Here we describe a transparent pipeline for confident miRNA identification in animals, termed miRdentify. We show that miRdentify confidently discloses more than 400 novel miRNAs in humans, including the first male-specific miRNA, which we successfully validate. Moreover, novel miRNAs are predicted in the mouse, the fruit fly and nematodes, suggesting that the pipeline applies to all animals. The entire software package is available at www.ncrnalab.dk/mirdentify.  相似文献   

4.
5.
MicroRNAs (miRNAs) are important and ubiquitous regulators of gene expression in eukaryotes. However, the information about miRNAs population and their regulatory functions involving in soybean seed development remains incomplete. Base on the Dicer-like1-mediated cleavage signals during miRNA processing could be employed for novel miRNA discovery, a genome-wide search for miRNA candidates involved in seed development was carried out. As a result, 17 novel miRNAs, 14 isoforms of miRNA (isomiRs) and 31 previously validated miRNAs were discovered. These novel miRNAs and isomiRs represented tissue-specific expression and the isomiRs showed significantly higher abundance than that of their miRNA counterparts in different tissues. After target prediction and degradome sequencing data-based validation, 13 novel miRNA–target pairs were further identified. Besides, five targets of 22-nt iso-gma-miR393h were found to be triggered to produce secondary trans-acting siRNA (ta-siRNAs). Summarily, our results could expand the repertoire of miRNAs with potentially important functions in soybean.  相似文献   

6.
7.
MicroRNAs (miRNAs) constitute an important class of small regulatory RNAs that are derived from distinct hairpin precursors (pre-miRNAs). In contrast to mature miRNAs, which have been characterized in numerous genome-wide studies of different organisms, research on global profiling of pre-miRNAs is limited. Here, using massive parallel sequencing, we have performed global characterization of both mouse mature and precursor miRNAs. In total, 87 369 704 and 252 003 sequencing reads derived from 887 mature and 281 precursor miRNAs were obtained, respectively. Our analysis revealed new aspects of miRNA/pre-miRNA processing and modification, including eight Ago2-cleaved pre-miRNAs, eight new instances of miRNA editing and exclusively 5′ tailed mirtrons. Furthermore, based on the sequences of both mature and precursor miRNAs, we developed a miRNA discovery pipeline, miRGrep, which does not rely on the availability of genome reference sequences. In addition to 239 known mouse pre-miRNAs, miRGrep predicted 41 novel ones with high confidence. Similar as known ones, the mature miRNAs derived from most of these novel loci showed both reduced abundance following Dicer knockdown and the binding with Argonaute2. Evaluation on data sets obtained from Caenorhabditis elegans and Caenorhabditis sp.11 demonstrated that miRGrep could be widely used for miRNA discovery in metazoans, especially in those without genome reference sequences.  相似文献   

8.
9.
10.
miRDeepFinder is a software package developed to identify and functionally analyze plant microRNAs (miRNAs) and their targets from small RNA datasets obtained from deep sequencing. The functions available in miRDeepFinder include pre-processing of raw data, identifying conserved miRNAs, mining and classifying novel miRNAs, miRNA expression profiling, predicting miRNA targets, and gene pathway and gene network analysis involving miRNAs. The fundamental design of miRDeepFinder is based on miRNA biogenesis, miRNA-mediated gene regulation and target recognition, such as perfect or near perfect hairpin structures, different read abundances of miRNA and miRNA*, and targeting patterns of plant miRNAs. To test the accuracy and robustness of miRDeepFinder, we analyzed a small RNA deep sequencing dataset of Arabidopsis thaliana published in the GEO database of NCBI. Our test retrieved 128 of 131 (97.7%) known miRNAs that have a more than 3 read count in Arabidopsis. Because many known miRNAs are not associated with miRNA*s in small RNA datasets, miRDeepFinder was also designed to recover miRNA candidates without the presence of miRNA*. To mine as many miRNAs as possible, miRDeepFinder allows users to compare mature miRNAs and their miRNA*s with other small RNA datasets from the same species. Cleaveland software package was also incorporated into miRDeepFinder for miRNA target identification using degradome sequencing analysis. Using this new computational tool, we identified 13 novel miRNA candidates with miRNA*s from Arabidopsis and validated 12 of them experimentally. Interestingly, of the 12 verified novel miRNAs, a miRNA named AC1 spans the exons of two genes (UTG71C4 and UGT71C3). Both the mature AC1 miRNA and its miRNA* were also found in four other small RNA datasets. We also developed a tool, ??miRNA primer designer?? to design primers for any type of miRNAs. miRDeepFinder provides a powerful tool for analyzing small RNA datasets from all species, with or without the availability of genome information. miRDeepFinder and miRNA primer designer are freely available at http://www.leonxie.com/DeepFinder.php and at http://www.leonxie.com/miRNAprimerDesigner.php, respectively. A program (called RefFinder: http://www.leonxie.com/referencegene.php) was also developed for assessing the reliable reference genes for gene expression analysis, including miRNAs.  相似文献   

11.
Meng F  Hackenberg M  Li Z  Yan J  Chen T 《PloS one》2012,7(3):e34394
MicroRNAs (miRNAs) are small non-coding RNAs that regulate a variety of biological processes. The latest version of the miRBase database (Release 18) includes 1,157 mouse and 680 rat mature miRNAs. Only one new rat mature miRNA was added to the rat miRNA database from version 16 to version 18 of miRBase, suggesting that many rat miRNAs remain to be discovered. Given the importance of rat as a model organism, discovery of the completed set of rat miRNAs is necessary for understanding rat miRNA regulation. In this study, next generation sequencing (NGS), microarray analysis and bioinformatics technologies were applied to discover novel miRNAs in rat kidneys. MiRanalyzer was utilized to analyze the sequences of the small RNAs generated from NGS analysis of rat kidney samples. Hundreds of novel miRNA candidates were examined according to the mappings of their reads to the rat genome, presence of sequences that can form a miRNA hairpin structure around the mapped locations, Dicer cleavage patterns, and the levels of their expression determined by both NGS and microarray analyses. Nine novel rat hairpin precursor miRNAs (pre-miRNA) were discovered with high confidence. Five of the novel pre-miRNAs are also reported in other species while four of them are rat specific. In summary, 9 novel pre-miRNAs (14 novel mature miRNAs) were identified via combination of NGS, microarray and bioinformatics high-throughput technologies.  相似文献   

12.
Chinese hamster ovary (CHO) cells are the predominant cell factory for the production of recombinant therapeutic proteins. Nevertheless, the lack in publicly available sequence information is severely limiting advances in CHO cell biology, including the exploration of microRNAs (miRNA) as tools for CHO cell characterization and engineering. In an effort to identify and annotate both conserved and novel CHO miRNAs in the absence of a Chinese hamster genome, we deep-sequenced small RNA fractions of 6 biotechnologically relevant cell lines and mapped the resulting reads to an artificial reference sequence consisting of all known miRNA hairpins. Read alignment patterns and read count ratios of 5' and 3' mature miRNAs were obtained and used for an independent classification into miR/miR* and 5p/3p miRNA pairs and discrimination of miRNAs from other non-coding RNAs, resulting in the annotation of 387 mature CHO miRNAs. The quantitative content of next-generation sequencing data was analyzed and confirmed using qPCR, to find that miRNAs are markers of cell status. Finally, cDNA sequencing of 26 validated targets of miR-17-92 suggests conserved functions for miRNAs in CHO cells, which together with the now publicly available sequence information sets the stage for developing novel RNAi tools for CHO cell engineering.  相似文献   

13.
MicroRNAs (miRNAs) are crucial regulators of gene expression in plants and a growing number of novel miRNA genes have been cloned in rice in recent years. However, there is no evidence that all miRNAs have been discovered, especially for those low expression ones which are difficult to be found by conventional methods. By taking advantage of the finding that DCL1-mediated cleavage signals for the processing of the miRNA precursors could be used as the clues for novel miRNAs’ discovery, a genome-wide search for rice miRNA candidates was carried out. As a result, 51 previously validated miRNAs and 24 novel miRNA candidates were discovered. After target prediction and degradome sequencing data-based validation, coupled with reverse approach retest, 10 miRNA candidate–mRNA target pairs were further identified, providing a basis for in-depth functional analysis of these miRNA candidates. Besides, some isomiRs found in this study showed more likely to be the real miRNAs. We also found an exceptional example which did not obey the rule that 22-nt miRNAs have the ability to trigger the phased siRNAs production from the cleaved targets.  相似文献   

14.
15.
Meng Y  Shao C  Wang H  Chen M 《RNA biology》2012,9(3):249-253
In this survey, we did a large-scale re-examination of the currently registered plant microRNAs (miRNAs) in miRBase (release 17), which were annotated based on the already established criteria. Huge public small RNA (sRNA) high-throughput sequencing (HTS) data sets were employed to interrogate the accuracy of the miRBase registries based on the secondary structures of the miRNA precursors and the expression levels of the miRNAs and the miRNA*s. Our results raised the caveat that the current miRNA lists in miRBase should be carefully refined, and more strict criteria should be implemented for new miRNA registration. Through this work, we proposed a structure- and expression-based strategy to validate a set of defined miRNA genes, or even to annotate novel ones based on currently available sRNA HTS data sets. We also hope to inspire further research efforts on the manual refinement of the current miRNA gene lists.  相似文献   

16.
Chen L  Ren Y  Zhang Y  Xu J  Zhang Z  Wang Y 《Planta》2012,235(5):873-883
MicroRNAs (miRNAs) are small RNAs, generally of 20–23 nt, that down-regulate target gene expression during development, differentiation, growth, and metabolism. In Populus, extensive studies of miRNAs involved in cold, heat, dehydration, salinity, and mechanical stresses have been performed; however, there are few reports profiling the miRNA expression patterns during pathogen stress. We obtained almost 38 million raw reads through Solexa sequencing of two libraries from Populus inoculated and uninoculated with canker disease pathogen. Sequence analyses identified 74 conserved miRNA sequences belonging to 37 miRNA families from 154 loci in the Populus genome and 27 novel miRNA sequences from 35 loci, including their complementary miRNA* strands. Intriguingly, the miRNA* of three conserved miRNAs were more abundant than their corresponding miRNAs. The overall expression levels of conserved miRNAs increased when subjected to pathogen stress, and expression levels of 33 miRNA sequences markedly changed. The expression trends determined by sequencing and by qRT-PCR were similar. Finally, nine target genes for three conserved miRNAs and 63 target genes for novel miRNAs were predicted using computational analysis, and their functions were annotated. Deep sequencing provides an opportunity to identify pathogen-regulated miRNAs in trees, which will help in understanding the regulatory mechanisms of plant defense responses during pathogen infection.  相似文献   

17.
18.
19.
Plant microRNAs (miRNAs) play crucial regulatory roles in various developmental processes. In this study, we characterize the miRNA profile of the shoot apical meristem (SAM) of an important legume crop, soybean, by integrating high-throughput sequencing data with miRNA microarray analysis. A total of 8423 non-redundant sRNAs were obtained from two libraries derived from micro-dissected SAM or mature leaf tissue. Sequence analysis allowed the identification of 32 conserved miRNA families as well as 8 putative novel miRNAs. Subsequent miRNA profiling with microarrays verified the expression of the majority of these conserved and novel miRNAs. It is noteworthy that several miRNAs* were expressed at a level similar to or higher than their corresponding mature miRNAs in SAM or mature leaf, suggesting a possible biological function for the star species. In situ hybridization analysis revealed a distinct spatial localization pattern for a conserved miRNA, miR166, and its star speciessuggesting that they serve different roles in regulating leaf development. Furthermore, localization studies showed that a novel soybean miRNA, miR4422a, was nuclear-localized. This study also indicated a novel expression pattern of miR390 in soybean. Our approach identified potential key regulators and provided vital spatial information towards understanding the regulatory circuits in the SAM of soybean during shoot development.  相似文献   

20.
Microarrays to examine the global expression levels of microRNAs (miRNAs) in a systematic in-parallel manner have become important tools to help unravel the functions of miRNAs and to understand their roles in RNA-based regulation and their implications in human diseases. We have established a novel miRNA-specific microarray platform that enables the simultaneous expression analysis of both known and predicted miRNAs obtained from human or mouse origin. Chemically modified 2′-O-(2-methoxyethyl)-(MOE) oligoribonucleotide probes were arrayed onto Evanescent Resonance (ER) microchips by robotic spotting. Supplementing the complementary probes against miRNAs with carefully designed mismatch controls allowed for accurate sequence-specific determination of miRNA expression profiles obtained from a panel of mouse tissues. This revealed new expression signatures of known miRNAs as well as of novel miRNAs previously predicted using bioinformatic methods. Systematic confirmation of the array data with northern blotting and, in particular, real-time PCR suggests that the described microarray platform is a powerful tool to analyze miRNA expression patterns with rapid throughput and high fidelity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号