首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aggregation and accumulation of the microtubule-associated protein tau are associated with cognitive decline and neuronal degeneration in Alzheimer's disease and other tauopathies. Thus, preventing the transition of tau from a soluble state to insoluble aggregates and/or reversing the toxicity of existing aggregates would represent a reasonable therapeutic strategy for treating these neurodegenerative diseases. Here we demonstrate that molecular chaperones of the heat shock protein 70 (Hsp70) family are potent inhibitors of tau aggregation in vitro, preventing the formation of both mature fibrils and oligomeric intermediates. Remarkably, addition of Hsp70 to a mixture of oligomeric and fibrillar tau aggregates prevents the toxic effect of these tau species on fast axonal transport, a critical process for neuronal function. When incubated with preformed tau aggregates, Hsp70 preferentially associated with oligomeric over fibrillar tau, suggesting that prefibrillar oligomeric tau aggregates play a prominent role in tau toxicity. Taken together, our data provide a novel molecular basis for the protective effect of Hsp70 in tauopathies.  相似文献   

2.
Alzheimer's disease and Parkinson's disease are the most common neurodegenerative diseases. They are characterized by the degeneration of selected populations of nerve cells that develop filamentous inclusions before degeneration. The neuronal inclusions of Alzheimer's disease are made of the microtubule-associated protein tau, in a hyperphosphorylated state. Recent work has shown that the filamentous inclusions of Parkinson's disease are made of the protein alpha-synuclein and that rare, familial forms of Parkinson's disease are caused by missense mutations in the alpha-synuclein gene. Besides Parkinson's disease, the filamentous inclusions of two additional neurodegenerative diseases, namely dementia with Lewy bodies and multiple system atrophy, have also been found to be made of alpha-synuclein. Abundant filamentous tau inclusions are not limited to Alzheimer's disease. They are the defining neuropathological characteristic of frontotemporal dementias such as Pick's disease, and of progressive supranuclear palsy and corticobasal degeneration. The recent discovery of mutations in the tau gene in familial forms of frontotemporal dementia has provided a direct link between tau dysfunction and dementing disease. The new work has established that tauopathies and alpha-synucleinopathies account for most late-onset neurodegenerative diseases in man. The formation of intracellular filamentous inclusions might be the gain of toxic function that leads to the demise of affected brain cells.  相似文献   

3.
Tau dysfunction has been associated with a host of neurodegenerative diseases called tauopathies. These diseases share, as a common pathological hallmark, the presence of intracellular aggregates of hyperphosphorylated tau in affected brain areas. Aside from tau hyperphosphorylation, little is known about the role of other posttranslational modifications in tauopathies. Recently, we obtained data suggesting that calpain-mediated tau cleavage leading to the generation of a neurotoxic tau fragment might play an important role in Alzheimer's disease. In the current study, we assessed the presence of this tau fragment in several tauopathies. Our results show high levels of the 17-kDa tau fragment and enhanced calpain activity in the temporal cortex of AD patients and in brain samples obtained from patients with other tauopathies. In addition, our data suggest that this fragment could partially inhibit tau aggregation. Conversely, tau aggregation might prevent calpain-mediated cleavage, establishing a feedback circuit that might lead to the accumulation of this toxic tau fragment. Collectively, these data suggest that the mechanism underlying the generation of the 17-kDa neurotoxic tau fragment might be part of a conserved pathologic process shared by multiple tauopathies.  相似文献   

4.
Phosphorylated tau is deposited as insoluble inclusion bodies in the tauopathies. We have used a new efficient method to dephosphorylate tau extracted from control and tauopathy brain. In some tauopathies, including Alzheimer's disease and progressive supranuclear palsy, the pattern of insoluble tau isoforms reflected that of soluble tau. In contrast, in corticobasal degeneration, Pick's disease, and some forms of fronto-temporal dementia, specific tau isoforms were selectively sequestered into insoluble inclusion-forming tau. Therefore the overall expression of individual tau isoforms does not predict which tau isoforms are deposited in all tauopathies and different mechanisms must operate that result in the deposition of specific tau isoforms.  相似文献   

5.
A152T‐variant human tau (hTau‐A152T) increases risk for tauopathies, including Alzheimer's disease. Comparing mice with regulatable expression of hTau‐A152T or wild‐type hTau (hTau‐WT), we find age‐dependent neuronal loss, cognitive impairments, and spontaneous nonconvulsive epileptiform activity primarily in hTau‐A152T mice. However, overexpression of either hTau species enhances neuronal responses to electrical stimulation of synaptic inputs and to an epileptogenic chemical. hTau‐A152T mice have higher hTau protein/mRNA ratios in brain, suggesting that A152T increases production or decreases clearance of hTau protein. Despite their functional abnormalities, aging hTau‐A152T mice show no evidence for accumulation of insoluble tau aggregates, suggesting that their dysfunctions are caused by soluble tau. In human amyloid precursor protein (hAPP) transgenic mice, co‐expression of hTau‐A152T enhances risk of early death and epileptic activity, suggesting copathogenic interactions between hTau‐A152T and amyloid‐β peptides or other hAPP metabolites. Thus, the A152T substitution may augment risk for neurodegenerative diseases by increasing hTau protein levels, promoting network hyperexcitability, and synergizing with the adverse effects of other pathogenic factors.  相似文献   

6.
Tauopathies are neurodegenerative disorders characterized by the accumulation of abnormal tau protein leading to cognitive and/or motor dysfunction. To understand the relationship between tau pathology and behavioral impairments, we comprehensively assessed behavioral abnormalities in a mouse tauopathy model expressing the human P301S mutant tau protein in the early stage of disease to detect its initial neurological manifestations. Behavioral abnormalities, shown by open field test, elevated plus-maze test, hot plate test, Y-maze test, Barnes maze test, Morris water maze test, and/or contextual fear conditioning test, recapitulated the neurological deficits of human tauopathies with dementia. Furthermore, we discovered that prepulse inhibition (PPI), a marker of sensorimotor gating, was enhanced in these animals concomitantly with initial neuropathological changes in associated brain regions. This finding provides evidence that our tauopathy mouse model displays neurofunctional abnormalities in prodromal stages of disease, since enhancement of PPI is characteristic of amnestic mild cognitive impairment, a transitional stage between normal aging and dementia such as Alzheimer's disease (AD), in contrast with attenuated PPI in AD patients. Therefore, assessment of sensorimotor gating could be used to detect the earliest manifestations of tauopathies exemplified by prodromal AD, in which abnormal tau protein may play critical roles in the onset of neuronal dysfunctions.  相似文献   

7.
To investigate how tau affects neuronal function during neurofibrillary tangle (NFT) formation, we examined the behavior, neural activity, and neuropathology of mice expressing wild-type human tau. Here, we demonstrate that aged (>20 months old) mice display impaired place learning and memory, even though they do not form NFTs or display neuronal loss. However, soluble hyperphosphorylated tau and synapse loss were found in the same regions. Mn-enhanced MRI showed that the activity of the parahippocampal area is strongly correlated with the decline of memory as assessed by the Morris water maze. Taken together, the accumulation of hyperphosphorylated tau and synapse loss in aged mice, leading to inhibition of neural activity in parahippocampal areas, including the entorhinal cortex, may underlie place learning impairment. Thus, the accumulation of hyperphosphorylated tau that occurs before NFT formation in entorhinal cortex may contribute to the memory problems seen in Alzheimer's disease (AD).  相似文献   

8.
The pathology of Alzheimer's disease (AD) is characterized by the accumulation of amyloid-β (Aβ) peptide, hyperphosphorylated tau protein, neuronal death, and synaptic loss. By means of long-term two-photon in vivo imaging and confocal imaging, we characterized the spatio-temporal pattern of dendritic spine loss for the first time in 3xTg-AD mice. These mice exhibit an early loss of layer III neurons at 4 months of age, at a time when only soluble Aβ is abundant. Later on, dendritic spines are lost around amyloid plaques once they appear at 13 months of age. At the same age, we observed spine loss also in areas apart from amyloid plaques. This plaque independent spine loss manifests exclusively at dystrophic dendrites that accumulate both soluble Aβ and hyperphosphorylated tau intracellularly. Collectively, our data shows that three spatio-temporally independent events contribute to a net loss of dendritic spines. These events coincided either with the occurrence of intracellular soluble or extracellular fibrillar Aβ alone, or the combination of intracellular soluble Aβ and hyperphosphorylated tau.  相似文献   

9.
Tau aggregation is a pathological hallmark of Alzheimer's disease, Parkinson's disease, and many other neurodegenerative disorders known as tauopathies. Tau aggregates take on many forms, and their formation is a multistage process with intermediate stages. Recently, tau oligomers have emerged as the pathogenic species in tauopathies and a possible mediator of amyloid-β toxicity in Alzheimer's disease. Here, we use a novel, physiologically relevant method (oligomer cross-seeding) to prepare homogeneous populations of tau oligomers and characterize these oligomers in vitro. We show that both Aβ and α-synuclein oligomers induce tau aggregation and the formation of β-sheet-rich neurotoxic tau oligomers.  相似文献   

10.
11.
Transition of protein tau from physiologically unfolded to misfolded state represent enigmatic step in the pathogenesis of tauopathies including Alzheimer’s disease (AD). Major molecular events playing role in this process involve truncation and hyperphosphorylation of tau protein, which are accompanied by redox imbalance followed by functional deterioration of neuronal network. Recently we have developed transgenic rat model showing that expression of truncated tau causes neurofibrillary degeneration similar to that observed in brain of AD sufferers. Consequently we tested cortical and hippocampal neuronal cultures extracted from this model as a convenient tool for development of molecules able to target the mechanisms leading to and/or enhancing the process of neurodegeneration. Here we document three major pathological features typical for tauopathies and AD in cortical and hippocampal neurons from transgenic rat in vitro. First, an increased accumulation of human truncated tau in neurons; second, the hyperphosphorylation of truncated tau on the epitopes characteristic of AD (Ser202/Thr205 and Thr231); and third, increased vulnerability of the neurons to nitrative and oxidative stress. Our results show that primary neurons expressing human truncated tau could represent a cellular model for targeting tau related pathological events, namely, aberrant tau protein accumulation, tau hyperphosphorylation, and oxidative/nitrative damage. These characteristics make the model particularly suitable for detailed study of molecular mechanisms of tau induced neurodegeneration and easily applicable for drug screening.  相似文献   

12.
Lithium is an anti-psychotic that has been shown to prevent the hyperphosphorylation of tau protein through the inhibition of glycogen-synthase kinase 3-beta (GSK3β). We recently developed a mouse model that progresses from amyloid pathology to tau pathology and neurodegeneration due to the genetic deletion of NOS2 in an APP transgenic mouse; the APPSwDI/NOS2-/- mouse. Because this mouse develops tau pathology, amyloid pathology and neuronal loss we were interested in the effect anti-tau therapy would have on amyloid pathology, learning and memory. We administered lithium in the diets of APPSwDI/NOS2-/- mice for a period of eight months, followed by water maze testing at 12 months of age, immediately prior to sacrifice. We found that lithium significantly lowered hyperphosphorylated tau levels as measured by Western blot and immunocytochemistry. However, we found no apparent neuroprotection, no effect on spatial memory deficits and an increase in histological amyloid deposition. Aβ levels measured biochemically were unaltered. We also found that lithium significantly altered the neuroinflammatory phenotype of the brain, resulting in enhanced alternative inflammatory response while concurrently lowering the classical inflammatory response. Our data suggest that lithium may be beneficial for the treatment of tauopathies but may not be beneficial for the treatment of Alzheimer's disease.  相似文献   

13.
Identification and characterization of the Drosophila tau homolog   总被引:3,自引:0,他引:3  
A pathological hallmark of neurodegenerative tauopathies, including Alzheimer's disease and a group of clinically heterogeneous frontotemporal dementias, is the presence of intracellular neurofibrillary protein lesions (reviewed in Spillantini and Goedert, TINS 10 (1998) 428). The principal component of these structures is the microtubule-associated protein tau. Although tau is normally a highly soluble protein enriched in axons, in these deposits, it is abnormally hyperphosphorylated, insoluble, and redistributed to the somatodendritic compartments of neurons. Through ultrastructual analyses, it has been determined that the tau protein in these lesions is filamentous and organized into paired-helical filaments, straight filaments, or ribbon-like filaments (Goedert et al., The Molecular and Genetic Basis of Neurological Disease (1997) 613). By the dynamic binding of microtubules, tau is thought to promote the structural stability of axons, but whether tau aggregates contribute to neurodegeneration through a direct toxicity on normal cellular functions such as organelle transport or an indirect effect on microtubule stability, is currently unknown. The identification of mutations in the tau locus in patients with familial frontotemporal dementia and Parkinsonism linked to chromosome 17 has demonstrated that mutations in tau are sufficient to cause neurodegenerative disease (Poorkaj et al., Ann. Neurol. 43 (1998) 815; Hutton et al., Nature 393 (1998) 702). To elucidate the mechanisms by which tau dysfunction contributes to neuronal loss, we have sought to model human tauopathies in a genetically tractable organism. Here we describe the isolation of a Drosophila tau cDNA (GenBank accession number AY032977), the production of antibodies that recognize the encoded protein, and their use in determining the expression and subcellular localization of the fly tau protein.  相似文献   

14.
Eidenmüller J  Fath T  Hellwig A  Reed J  Sontag E  Brandt R 《Biochemistry》2000,39(43):13166-13175
Abnormal tau-immunoreactive filaments are a hallmark of tauopathies, including Alzheimer's disease (AD). A higher phosphorylation ("hyperphosphorylation") state of tau protein may represent a critical event. To determine the potential role of tau hyperphosphorylation in these disorders, mutated tau proteins were produced where serine/threonine residues known to be highly phosphorylated in tau filaments isolated from AD patients were substituted for glutamate to simulate a paired helical filament (PHF)-like tau hyperphosphorylation. We demonstrate that, like hyperphosphorylation, glutamate substitutions induce compact structure elements and SDS-resistant conformational domains in tau protein. Hyperphosphorylation-mimicking glutamate-mutated tau proteins display a complete functional loss in its ability to promote microtubule nucleation which can partially be overcome by addition of the osmolyte trimethylamine N-oxide (TMAO), which is similar to phosphorylated tau. In addition, glutamate-mutated tau proteins fail to interact with the dominant brain protein phosphatase 2A isoform ABalphaC, and exhibit a reduced ability to assemble into filaments. Interestingly, wild-type tau and phosphorylation-mimicking tau similarly bind to microtubules when added alone, but the mutated tau is almost completely displaced from the microtubule surface by equimolar concentrations of wild-type tau. The data indicate that glutamate-mutated tau proteins provide a useful model for analyzing the functional consequences of tau hyperphosphorylation. They suggest that several mechanisms contribute to the abnormal tau accumulation observed during tauopathies, in particular a selective displacement of hyperphosphorylated tau from microtubules, a functional loss in promoting microtubule nucleation, and a failure to interact with phosphatases.  相似文献   

15.
Expression of the genes encoding the beta/A4 amyloid protein precursor (APP) and microtubule-associated protein tau was studied in an embryonal carcinoma cell line (P19) that differentiates in vitro into cholinergic neurons after treatment with retinoic acid. Expression of APP increased 34- (mRNA) and 50-fold (protein) during neuronal differentiation; APP-695 accounted for most of this increase. These remarkable increases in APP expression coincided with a proliferation of neuronal processes and with an increase in content of tau mRNA. Moreover, subsequent decreases in the levels of APP and tau mRNA coincided with the onset of the degeneration of the neuronal processes. Immunocytochemical staining suggested that greater than 85% of the P19-derived neurons are cholinergic and that APP is present in the neuronal processes and cell bodies. These results suggest that APP may play an important role in construction of neuronal networks and neuronal differentiation and also indicate that this embryonal carcinoma cell line provides an ideal model system to investigate biological functions of APP and the roles of APP and tau protein in development of Alzheimer's disease in cholinergic neurons.  相似文献   

16.
Aberrant phosphorylation of tau protein on serine and threonine residues has been shown to be critical in neurodegenerative disorders called tauopathies. An increasing amount of data suggest that tyrosine phosphorylation of tau might play an equally important role in pathology, with at least three putative tyrosine kinases of tau identified to date. It was recently shown that the tyrosine kinase Syk could efficiently phosphorylate alpha-synuclein, the aggregated protein found in Parkinson's disease and other synucleinopathies. We report herein that Syk is also a tau kinase, phosphorylating tau in vitro and in CHO cells when both proteins are expressed exogenously. In CHO cells, we have also demonstrated by co-immunoprecipitation that Syk binds to tau. Finally, by site-directed mutagenesis substituting the tyrosine residues of tau with phenylalanine, we established that tyrosine 18 was the primary residue in tau phosphorylated by Syk. The identification of Syk as a common tyrosine kinase of both tau and alpha-synuclein may be of potential significance in neurodegenerative disorders and also in neuronal physiology. These results bring another clue to the intriguing overlaps between tauopathies and synucleinopathies and provide new insights into the role of Syk in neuronal physiology.  相似文献   

17.
18.
Hyperphosphorylated forms of the neuronal microtubule (MT)-associated protein tau are major components of Alzheimer's disease paired helical filaments. Previously, we reported that ABalphaC, the dominant brain isoform of protein phosphatase 2A (PP2A), is localized on MTs, binds directly to tau, and is a major tau phosphatase in cells. We now describe direct interactions among tau, PP2A, and MTs at the submolecular level. Using tau deletion mutants, we found that ABalphaC binds a domain on tau that is indistinguishable from its MT-binding domain. ABalphaC binds directly to MTs through a site that encompasses its catalytic subunit and is distinct from its binding site for tau, and ABalphaC and tau bind to different domains on MTs. Specific PP2A isoforms bind to MTs with distinct affinities in vitro, and these interactions differentially inhibit the ability of PP2A to dephosphorylate various substrates, including tau and tubulin. Finally, tubulin assembly decreases PP2A activity in vitro, suggesting that PP2A activity can be modulated by MT dynamics in vivo. Taken together, these findings indicate how structural interactions among ABalphaC, tau, and MTs might control the phosphorylation state of tau. Disruption of these normal interactions could contribute significantly to development of tauopathies such as Alzheimer's disease.  相似文献   

19.
Tau, a microtubule associated protein, aggregates into intracellular paired helical filaments (PHFs) by an unknown mechanism in Alzheimer's disease (AD) and other tauopathies. A contributing factor may be a failure to metabolize free cytosolic tau within the neuron. The buildup of tau may then drive the aggregation process through mass action. Therefore, proteases that normally degrade tau are of great interest. A recent genetic screen identified puromycin-sensitive aminopeptidase (PSA) as a potent modifier of tau-induced pathology and suggested PSA as a possible tau-degrading enzyme. Here we have extended these observations using human recombinant PSA purified from Escherichia coli. The enzymatic activity and characteristics of the purified PSA were verified using chromogenic substrates, metal ions, and several specific and nonspecific protease inhibitors, including puromycin. PSA was shown to digest recombinant human full-length tau in vitro, and this activity was hindered by puromycin. The mechanism of amino terminal degradation of tau was confirmed using a novel N-terminal cleavage-specific tau antibody (Tau-C6g, specific for cleavage between residues 13-14) and a C-terminal cleavage-specific tau antibody (Tau-C3). Additionally, PSA was able to digest soluble tau purified from normal human brain to a greater extent than either soluble or PHF tau purified from AD brain, indicating that post-translational modifications and/or polymerization of tau may affect its digestion by PSA. These results are consistent with observations that PSA modulates tau levels in vivo and suggest that this enzyme may be involved in tau degradation in human brain.  相似文献   

20.
Hyperphosphorylated tau proteins accumulate in the paired helical filaments of neurofibrillary tangles seen in such tauopathies as Alzheimer's disease. In the present paper we show that tau turnover is dependent on degradation by the proteasome (inhibited by MG132) in HT22 neuronal cells. Recombinant human tau was rapidly degraded by the 20 S proteasome in vitro, but tau phosphorylation by GSK3beta (glycogen synthase kinase 3beta) significantly inhibited proteolysis. Tau phosphorylation was increased in HT22 cells by OA [okadaic acid; which inhibits PP (protein phosphatase) 1 and PP2A] or CsA [cyclosporin A; which inhibits PP2B (calcineurin)], and in PC12 cells by induction of a tet-off dependent RCAN1 transgene (which also inhibits PP2B). Inhibition of PP1/PP2A by OA was the most effective of these treatments, and tau hyperphosphorylation induced by OA almost completely blocked tau degradation in HT22 cells (and in cell lysates to which purified proteasome was added) even though proteasome activity actually increased. Many tauopathies involve both tau hyperphosphorylation and the oxidative stress of chronic inflammation. We tested the effects of both cellular oxidative stress, and direct tau oxidative modification in vitro, on tau proteolysis. In HT22 cells, oxidative stress alone caused no increase in tau phosphorylation, but did subtly change the pattern of tau phosphorylation. Tau was actually less susceptible to direct oxidative modification than most cell proteins, and oxidized tau was degraded no better than untreated tau. The combination of oxidative stress plus OA treatment caused extensive tau phosphorylation and significant inhibition of tau degradation. HT22 cells transfected with tau-CFP (cyan fluorescent protein)/tau-GFP (green fluorescent protein) constructs exhibited significant toxicity following tau hyperphosphorylation and oxidative stress, with loss of fibrillar tau structure throughout the cytoplasm. We suggest that the combination of tau phosphorylation and tau oxidation, which also occurs in tauopathies, may be directly responsible for the accumulation of tau aggregates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号