首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
Adrenomedullin is a secreted peptide hormone with multiple functions. Although a number of reports have indicated that adrenomedullin may be involved in tumor progression, its mechanism of action remains obscure. In this study, we have analysed the signal transduction pathway activated by adrenomedullin in human glioma cells. Our results revealed that adrenomedullin induced the phosphorylation of both c-Jun and JNK in glioblastoma cells. Silencing JNK expression with siRNA reversed the phosphorylation of c-Jun induced by adrenomedullin, indicating that JNK is responsible of c-Jun activation. In addition, electrophoretic mobility-shift assays showed that the increase in phosphorylation of c-Jun was associated with increased AP-1 DNA binding activity. Supershift assays and co-immunoprecipitation demonstrated that c-Jun and JunD are part of the AP-1 complex, indicating that activated c-Jun is dimerized with JunD in response to adrenomedullin. Furthermore, adrenomedullin was shown to promote cell transit beyond cell cycle phases with a concomittant increase in cyclin D1 protein level, suggesting that adrenomedullin effect cell proliferation through up-regulation of cyclin D1. The inhibition of JNK activation or the suppression of c-Jun or JunD expression with siRNA impaired the effects of adrenomedullin on cell proliferation and on cyclin D1. Taken together, these data demonstrate that activation of cJun/JNK pathway is involved in the growth regulatory activity of adrenomedullin in glioblastoma cells.  相似文献   

3.
The mechanism of homocysteine‐induced cell proliferation in human vascular smooth muscle cells (SMCs) remains unclear. We investigated the molecular mechanisms by which homocysteine affects the expression of cyclins A and D1 in human umbilical artery SMCs (HUASMCs). Homocysteine treatment induced proliferation of HUASMCs and increased the expression levels of cyclins A and D1. Knocking down either cyclin A or cyclin D1 by small interfering RNA (siRNA) inhibited homocysteine‐induced cell proliferation. Furthermore, treatment with extracellular signal‐related kinase (ERK) inhibitor (PD98059) and dominant negative Ras (RasN17) abolished homocysteine‐induced cyclin A expression; and treatment with phosphatidylinositol 3‐kinase (PI3K) inhibitor (LY294002) and mammalian target of rapamycin (mTOR) inhibitor (rapamycin) attenuated the homocysteine‐induced cyclin D1 expression. Homocysteine also induced transient phosphorylation of ERK, Akt, and p70 ribosomal S6 kinase (p70S6K). Neutralizing antibody and siRNA for β1 integrin blocked cell proliferation, expression of cyclins A and D1, and phosphorylation of ERK and Akt. In conclusion, homocysteine‐induced differential activation of Ras/ERK and PI3K/Akt/p70S6K signaling pathways and consequent expression of cyclins A and D1 are dependent on β1 integrin. Homocysteine may accelerate progression of atherosclerotic lesions by promoting SMC proliferation. J. Cell. Physiol. 226: 1017–1026, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
5.
The evolutionarily conserved SWI-SNF chromatin remodeling complex regulates cellular proliferation. A catalytic subunit, BRG-1, is frequently down regulated, silenced or mutated in malignant cells, however, the mechanism by which BRG-1 may function as a tumor suppressor or block breast cancer cellular proliferation is not understood. The cyclin D1 gene is a collaborative oncogene overexpressed in greater than 50% of human breast cancers. Herein, BRG-1 inhibited DNA synthesis and cyclin D1 expression in human MCF-7 breast cancer epithelial cells. The cyclin D1 promoter AP-1 and CRE sites were required for repression by BRG-1 in promoter assays. BRG-1 deficient cells abolished and siRNA to BRG-1 reduced, formation of the BRG-1 chromatin complex. The endogenous cyclin D1 promoter AP-1 site bound BRG-1. Estradiol treatment of MCF7 cells induced recruitment of BRG-1 to the endogenous hpS2 gene promoter. Estradiol, which induced cyclin D1 abundance, was associated with a reduction in recruitment of the co-repressors HP1α/HDAC1 to the endogenous cyclin D1 promoter AP-1/BRG-1 binding sites. These studies suggest the endogenous cyclin D1 promoter BRG-1 binding site functions as a molecular scaffold in the context of local chromatin upon which coactivators and corepressors are recruited to regulate cyclin D1.  相似文献   

6.
7.
The conditional kinase DeltaMEKK3:ER allows activation of JNK, p38 and ERK1/2 without overt cellular stress or damage and has proved useful in understanding how these pathways regulate apoptosis and cell cycle progression. We have previously shown that activation of DeltaMEKK3:ER causes a sustained G(1) cell cycle arrest which requires p21(CIP1), with ERK1/2 and p38 cooperating to promote p21(CIP1) expression. In cells lacking p21(CIP1), DeltaMEKK3:ER causes only a transient delay in cell cycle re-entry. We now show that this delay in cell cycle re-entry is due to a reduction in cyclin D1 levels. Activation of DeltaMEKK3:ER promotes the proteasome-dependent turnover of cyclin D1; this requires phosphorylation of threonine 286 (T(286)) and expression of cyclin D1T(286)A rescues the delay in G(1)/S progression. DeltaMEKK3:ER-dependent phosphorylation of T(286) does not appear to be mediated by GSK3beta but requires activation of the ERK1/2 and p38 pathways. ERK1/2 can physically associate with cyclin D1 but activation of ERK1/2 alone is not sufficient for phosphorylation of T(286). Rather, cyclin D1 phosphorylation appears to require coincident activation of ERK1/2 and p38. Thus activation of DeltaMEKK3:ER promotes a sustained G(1) cell cycle arrest by a bipartite mechanism involving the rapid destruction of cyclin D1 and the slower more prolonged expression of p21(CIP1). This has parallels with the bipartite response to ionizing radiation and p53-independent mechanisms of G(1) cell cycle arrest in simple organisms such as yeast.  相似文献   

8.
Portal hypertensive (PHT) gastric mucosa has increased susceptibility to injury and impaired mucosal healing. Our previous study demonstrated increased ERK activation and MAP kinase phosphatase-1 (MKP-1) overexpression in PHT gastric mucosa. However, it remains unknown which tyrosine kinase receptors are involved in ERK activation and whether ERK activation results in increased cell proliferation. We examined whether EGF receptor (EGF-R) is involved in ERK activation and whether ERK activation triggers epithelial proliferation in PHT gastric mucosa. In gastric mucosa of PHT and sham-operated (SO) rats we studied: (1) EGF-R mRNA and protein expression as well as phosphorylation and membrane protein tyrosine kinase (PTK) activity; (2) ERK2 phosphorylation and activity; (3) MKP-1 mRNA and protein; (4) c-fos, c-myc and cyclin D1 mRNAs, and gastric epithelial proliferation. In PHT gastric mucosa: (1) EGF-R mRNA, protein and phosphorylation and membrane PTK activity were all significantly increased by 38%, 49%, 43% and 49%, respectively; (2) ERK2 phosphorylation and activity were significantly increased by 40% and 50 %, respectively; (3) MKP-1 mRNA and protein expression were significantly increased by 27% and 34%, respectively. In contrast, (4) c-fos, c-myc, and cyclin D1 mRNAs expression were all significantly decreased in PHT gastric mucosa by 36%, 33%, and 49%, respectively, and cell proliferation was significantly lower that in SO rats (11% in PHT vs. 18% in SO). These results suggest that in PHT gastric mucosa, ERK activation is mediated through EGF-R upregulation, but the gastric epithelial proliferation is impaired, possibly by MKP-1 overexpression, leading to reduction of c-fos, c-myc and cyclin D1.  相似文献   

9.
10.
目的:探讨瘦素对人卵巢癌SKOV3细胞增殖及凋亡的影响及其作用机制。方法:用不同浓度的瘦素(0、50、100、200 ng/m L)处理人卵巢癌SKOV3细胞48 h后,采用MTT法检细胞的生长;以血清饥饿诱导细胞凋亡,同时给予瘦素刺激,Annexin V/PI双染法检测细胞凋亡的变化;western blotting分析p21、cyclin D1、Bcl-2、Bax蛋白的表达水平和ERK1/2通路的活化情况。结果:瘦素以剂量依赖性的方式促进人卵巢癌SKOV3细胞的增殖,同时抑制血清饥饿诱导的细胞凋亡。瘦素处理可下调p21和上调cyclin D1的表达,抑制促凋亡分子Bax的表达和上调抗凋亡分子Bcl-2的表达。瘦素可诱导细胞中ERK1/2通路的活化,其抑制剂PD98059可明显抑制瘦素诱导的促细胞增殖和抗凋亡作用,同时伴随有cyclin D1、Bcl-2蛋白表达的下调和Bax的上调。结论:瘦素可能通过活化ERK1/2通路调节细胞有丝分裂进程,进而促进卵巢癌细胞的增殖;同时通过调节凋亡相关蛋白Bcl-2和Bax的表达抑制卵巢癌细胞的凋亡。  相似文献   

11.
Endogenous CCK plays an important role in pancreatic regeneration after pancreatitis. We used primary culture of mouse pancreatic acinar cells to evaluate the effect of CCK on acinar cell morphology and gene expression and to determine signaling pathways required for proliferation of acinar cells in vitro. Over 4 days in culture, cells grew out from acini and formed patches of monolayer, which displayed a reduced expression of acinar cell markers including digestive enzymes and Mist1 and an increased expression of ductal and embryonic markers, including cytokeratin 7, β-catenin, E-cadherin, pdx-1, and nestin. There was no appearance of stellate cell markers. CCK enhanced cellular spreading, DNA synthesis, and cyclin D1 expression. When signaling pathways were evaluated, CCK stimulation increased c-Jun expression, JNK and ERK activity, and AP-1 activation. Chemical inhibitors of JNK and ERK pathways, dominant-negative JNK and c-Jun, and c-Jun shRNA significantly inhibited CCK-induced DNA synthesis, CCK-induced AP-1 activation, and cyclin D1 expression. Furthermore, dominant-negative c-Jun reduced the increased expression of β-catenin and the decreased expression of amylase during culture. These results show that MAPK/c-Jun/AP-1 pathway plays an important role in pancreatic acinar cell dedifferentiation and proliferation in culture. Monolayer culture can serve as a model to study acinar cell proliferation similar to regeneration after pancreatitis in vivo.  相似文献   

12.
L Zheng  Y Huang  W Song  X Gong  M Liu  X Jia  G Zhou  L Chen  A Li  Y Fan 《Journal of biomechanics》2012,45(14):2368-2375
Matrix metalloproteinase (MMP)-1, 2, with their endogenous inhibitors, tissue inhibitor of metalloproteinase (TIMP)-1, 2 are critical for extracellular matrix remodeling in human periodontal ligament (PDL) and their expression are sensitive to mechanical stresses. Shear stress as the main type of mechanical stress in tooth movement is involved in matrix turnover. However, how shear stress regulates MMPs and TIMPs system is still unclear. In this study, we investigated the effect of fluid shear stress on expression of MMP-1, 2 and TIMP-1, 2 in human PDL cells and the possible roles of mitogen-activated protein kinases in this process. Three levels of fluid shear stresses (6, 9 and 12dyn/cm(2)) were loaded on PDL cells for 2, 4, 8 and 12h. The results indicated that fluid shear stress rearranged cytoskeleton in PDL cells. Fluid shear stress increased expression of MMP-1, 2, TIMP-1 and suppressed TIMP-2 expression. MAP kinases including extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 were activated rapidly by fluid shear stress. The ERK inhibitor blocked fluid shear stress induced MMP-1 expression and P38 inhibitor reduced fluid shear stress stimulated MMP-2 expression. Our study suggested that fluid shear stress involved in PDL remodeling via regulating MMP-1, 2 and TIMP-1, 2 expression. ERK regulated fluid shear stress induced MMP-1 expression and P38 play a role in fluid shear stress induced MMP-2 upregulation.  相似文献   

13.
Increasing evidence suggests that obesity and aberrant proliferation of nucleus pulposus (NP) cells are associated with intervertebral disc degeneration. Leptin, a hormone with increased circulating level in obesity, has been shown to stimulate cell proliferation in a tissue-dependent manner. Nevertheless, the effect of leptin on the proliferation of human NP cells has not yet been demonstrated. Here, we show that leptin induced the proliferation of primary cultured human NP cells, which expressed the leptin receptors OBRa and OBRb. Induction of NP cell proliferation was confirmed by CCK8 assay and immunocytochemistry and Real-time PCR for PCNA and Ki-67. Mechanistically, leptin induced the phosphorylation of STAT3, Akt and ERK1/2 accompanied by the upregulation of cyclin D1. Pharmacological inhibition of JAK/STAT3, PI3K/Akt or MEK/ERK signaling by AG490, Wortmannin or U0126, respectively, reduced leptin-induced cyclin D1 expression and NP cell proliferation. These experiments also revealed an intricate crosstalk among these signaling pathways in mediating the action of leptin. Taken together, we show that leptin induces human NP cell cyclin D1 expression and proliferation via activation of JAK/STAT3, PI3K/Akt or MEK/ERK signaling. Our findings may provide a novel molecular mechanism that explains the association between obesity and intervertebral disc degeneration.  相似文献   

14.
Yan YX  Gong YW  Guo Y  Lv Q  Guo C  Zhuang Y  Zhang Y  Li R  Zhang XZ 《PloS one》2012,7(4):e35709
Mechanical strain plays a critical role in the proliferation, differentiation and maturation of bone cells. As mechanical receptor cells, osteoblasts perceive and respond to stress force, such as those associated with compression, strain and shear stress. However, the underlying molecular mechanisms of this process remain unclear. Using a four-point bending device, mouse MC3T3-E1 cells was exposed to mechanical tensile strain. Cell proliferation was determined to be most efficient when stimulated once a day by mechanical strain at a frequency of 0.5 Hz and intensities of 2500 με with once a day, and a periodicity of 1 h/day for 3 days. The applied mechanical strain resulted in the altered expression of 1992 genes, 41 of which are involved in the mitogen-activated protein kinase (MAPK) signaling pathway. Activation of ERK by mechanical strain promoted cell proliferation and inactivation of ERK by PD98059 suppressed proliferation, confirming that ERK plays an important role in the response to mechanical strain. Furthermore, the membrane-associated receptors integrin β1 and integrin β5 were determined to regulate ERK activity and the proliferation of mechanical strain-treated MC3T3-E1 cells in opposite ways. The knockdown of integrin β1 led to the inhibition of ERK activity and cell proliferation, whereas the knockdown of integrin β5 led to the enhancement of both processes. This study proposes a novel mechanism by which mechanical strain regulates bone growth and remodeling.  相似文献   

15.
Thyroid hormone-induced calorigenesis triggers liver oxidative stress with concomitant TNF-alpha production by Kupffer cells and up-regulation of gene expression. Considering that cyclin-dependent kinase-2 (CDK-2) performs essential functions for cellular proliferation, our aim was to test the hypothesis that l-3,3',5-triiodothyronine (T(3)) stimulates liver cell proliferation by upstream mechanisms involving CDK-2 expression dependent on Kupffer cell signaling. T(3) administration induced a calorigenic response at 60-70 h after treatment, with increased TNF-alpha generation and hepatic oxidative stress status, as shown by enhanced protein carbonyls and decreased glutathione content compared to controls. In this time interval, liver c-jun N-terminal kinase (JNK) phosphorylation, activator protein-1 (AP-1) DNA binding, and CDK-2 expression were enhanced, with concomitantly higher levels of the proliferation markers Ki-67 and proliferating cell nuclear antigen. These changes are abolished by administration of the Kupffer cell inactivator gadolinium chloride prior to T(3) treatment. We conclude that T(3) administration triggers liver CDK-2 expression and cellular proliferation through a cascade associated with Kupffer cell-dependent TNF-alpha generation, JNK phosphorylation, and AP-1 activation. Since CDK-2 promotes phase S progression within the cell cycle, this response may constitute a major mechanism involved in T(3)-induced liver preconditioning to ischemia/reperfusion injury.  相似文献   

16.
Although prostaglandin E2 (PGE2) has been shown by pharmacologic and genetic studies to be important in skin cancer, the molecular mechanism(s) by which it contributes to tumor growth is not well understood. In this study, we investigated the mechanisms by which PGE2 stimulates murine keratinocyte proliferation using in vitro and in vivo models. In primary mouse keratinocyte cultures, PGE2 activated the epidermal growth factor receptor (EGFR) and its downstream signaling pathways as well as increased cyclic AMP (cAMP) production and activated the cAMP response element binding protein (CREB). EGFR activation was not significantly inhibited by pretreatment with a c-src inhibitor (PP2), nor by a protein kinase A inhibitor (H-89). However, PGE2-stimulated extracellularly regulated kinase 1/2 (ERK1/2) activation was completely blocked by EGFR, ERK1/2, and phosphatidylinositol 3-kinase (PI3K) pathway inhibitors. In addition, these inhibitors attenuated the PGE2-induced proliferation, nuclear factor-kappa B, activator protein-1 (AP-1), and CREB binding to the promoter regions of the cyclin D1 and vascular endothelial growth factor (VEGF) genes and expression of cyclin D1 and VEGF in primary mouse keratinocytes. Similarly, in vivo, we found that WT mice treated with PGE2 and untreated cyclooxygenase-2-overexpressing transgenic mice had higher levels of cell proliferation and expression of cyclin D1 and VEGF, as well as higher levels of activated EGFR, nuclear factor-kappa B, AP-1, and CREB, than vehicle-treated WT mice. Our findings provide evidence for a link between cyclooxygenase-2 overexpression and EGFR-, ERK-, PI3K-, cAMP-mediated cell proliferation, and the tumor-promoting activity of PGE2 in mouse skin.  相似文献   

17.
Bone cells are subject to interstitial fluid flow (IFF) driven by venous pressure and mechanical loading. Rapid dynamic changes in mechanical loading cause transient gradients in IFF. The effects of pulsatile flow (temporal gradients in fluid shear) on rat UMR106 cells and rat primary osteoblastic cells were studied. Pulsatile flow induced a 95% increase in S-phase UMR106 cells compared with static controls. In contrast, ramped steady flow stimulated only a 3% increase. Similar patterns of S-phase induction were also observed in rat primary osteoblastic cells. Pulsatile flow significantly increased relative UMR106 cell number by 37 and 62% at 1.5 and 24 h, respectively. Pulsatile flow also significantly increased extracellular signal-regulated kinase (ERK1/2) phosphorylation by 418%, whereas ramped steady flow reduced ERK1/2 activation to 17% of control. Correspondingly, retinoblastoma protein was significantly phosphorylated by pulsatile fluid flow. Inhibition of mitogen-activated protein (MAP)/ERK kinase (MEK)1/2 by U0126 (a specific MEK1/2 inhibitor) reduced shear-induced ERK1/2 phosphorylation and cell proliferation. These findings suggest that temporal gradients in fluid shear stress are potent stimuli of bone cell proliferation.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号