首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arabidopsis Nup160 and Seh1, encoding two predicted nucleoporins of the Nup107–160 nuclear pore sub-complex, were identified in a reverse genetics screen based on their requirement for basal disease resistance. Both genes also contribute to immunity conferred by Toll interleukin 1 receptor/nucleotide-binding/leucine-rich repeat (TNL)-type R proteins and constitutive resistance activated in the deregulated TNL mutant, snc1. Protein amounts of EDS1, a central regulator of TNL-triggered resistance, are reduced in seh1 and severely depleted in nup160 single mutants. Here, we investigate the impact of mutations in Nup160, Seh1 and a third complex member, MOS3/Nup96, on EDS1 protein accumulation in the snc1 auto-immune mutant background. In addition, we examine the subcellular localization of Seh1 in root tissues.  相似文献   

2.
Germain H  Qu N  Cheng YT  Lee E  Huang Y  Dong OX  Gannon P  Huang S  Ding P  Li Y  Sack F  Zhang Y  Li X 《PLoS genetics》2010,6(12):e1001250
Nucleocytoplasmic trafficking is emerging as an important aspect of plant immunity. The three related pathways affecting plant immunity include Nuclear Localization Signal (NLS)-mediated nuclear protein import, Nuclear Export Signal (NES)-dependent nuclear protein export, and mRNA export relying on MOS3, a nucleoporin belonging to the Nup107-160 complex. Here we report the characterization, identification, and detailed analysis of Arabidopsis modifier of snc1, 11 (mos11). Mutations in MOS11 can partially suppress the dwarfism and enhanced disease resistance phenotypes of snc1, which carries a gain-of-function mutation in a TIR-NB-LRR type Resistance gene. MOS11 encodes a conserved eukaryotic protein with homology to the human RNA binding protein CIP29. Further functional analysis shows that MOS11 localizes to the nucleus and that the mos11 mutants accumulate more poly(A) mRNAs in the nucleus, likely resulting from reduced mRNA export activity. Epistasis analysis between mos3-1 and mos11-1 revealed that MOS11 probably functions in the same mRNA export pathway as MOS3, in a partially overlapping fashion, before the mRNA molecules pass through the nuclear pores. Taken together, MOS11 is identified as a new protein contributing to the transfer of mature mRNA from the nucleus to the cytosol.  相似文献   

3.
4.
Synthetic lethal mutants have been previously isolated in fission yeast Schizosaccharomyces pombe, which genetically interact with spmex67, in order to identify the genes involved in mRNA export. The nup211 gene was isolated by complementation of the growth defect in one of the synthetic lethal mutants, SLMex2, under synthetic lethal condition. We showed that Nup211, fission yeast homolog of Mlpl/Mlp2/Tpr, is essential for vegetative growth and Nup211-GFP proteins expressed at endogenous level are localized mainly in nuclear periphery. The accumulation of poly(A)+ RNA in the nucleus is exhibited when expression of nup211 is repressed or over-expressed. These results suggest that the Nup211 protein plays a pivotal role of mRNA export in fission yeast.  相似文献   

5.
Importin‐α proteins mediate the translocation of nuclear localization signal (NLS)‐containing proteins from the cytoplasm into the nucleus through nuclear pore complexes (NPCs). Genetically, Arabidopsis IMPORTIN‐α3/MOS6 (MODIFIER OF SNC1, 6) is required for basal plant immunity and constitutive disease resistance activated in the autoimmune mutant snc1 (suppressor of npr1‐1, constitutive 1), suggesting that MOS6 plays a role in the nuclear import of proteins involved in plant defense signaling. Here, we sought to identify and characterize defense‐regulatory cargo proteins and interaction partners of MOS6. We conducted both in silico database analyses and affinity purification of functional epitope‐tagged MOS6 from pathogen‐challenged stable transgenic plants coupled with mass spectrometry. We show that among the 13 candidate MOS6 interactors we selected for further functional characterization, the TIR‐NBS‐type protein TN13 is required for resistance against Pseudomonas syringae pv. tomato (Pst) DC3000 lacking the type‐III effector proteins AvrPto and AvrPtoB. When expressed transiently in N. benthamiana leaves, TN13 co‐immunoprecipitates with MOS6, but not with its closest homolog IMPORTIN‐α6, and localizes to the endoplasmic reticulum (ER), consistent with a predicted N‐terminal transmembrane domain in TN13. Our work uncovered the truncated NLR protein TN13 as a component of plant innate immunity that selectively binds to MOS6/IMPORTIN‐α3 in planta. We speculate that the release of TN13 from the ER membrane in response to pathogen stimulus, and its subsequent nuclear translocation, is important for plant defense signal transduction.  相似文献   

6.
We have characterized Schizosaccharomyces pombe open reading frames encoding potential orthologues of constituents of the evolutionarily conserved Saccharomyces cerevisiae Nup84 vertebrate Nup107-160 nuclear pore subcomplex, namely Nup133a, Nup133b, Nup120, Nup107, Nup85, and Seh1. In spite of rather weak sequence conservation, in vivo analyses demonstrated that these S. pombe proteins are localized at the nuclear envelope. Biochemical data confirmed the organization of these nucleoporins within conserved complexes. Although examination of the S. cerevisiae and S. pombe deletion mutants revealed different viability phenotypes, functional studies indicated that the involvement of this complex in nuclear pore distribution and mRNA export has been conserved between these highly divergent yeasts. Unexpectedly, microscopic analyses of some of the S. pombe mutants revealed cell division defects at the restrictive temperature (abnormal septa and mitotic spindles and chromosome missegregation) that were reminiscent of defects occurring in several S. pombe GTPase Ran (Ran(Sp))/Spi1 cycle mutants. Furthermore, deletion of nup120 moderately altered the nuclear location of Ran(Sp)/Spi1, whereas overexpression of a nonfunctional Ran(Sp)/Spi1-GFP allele was specifically toxic in the Deltanup120 and Deltanup133b mutant strains, indicating a functional and genetic link between constituents of the S. pombe Nup107-120 complex and of the Ran(Sp)/Spi1 pathway.  相似文献   

7.
The mRNA lifecycle is driven through spatiotemporal changes in the protein composition of mRNA particles (mRNPs) that are triggered by RNA‐dependent DEAD‐box protein (Dbp) ATPases. As mRNPs exit the nuclear pore complex (NPC) in Saccharomyces cerevisiae, this remodeling occurs through activation of Dbp5 by inositol hexakisphosphate (IP6)‐bound Gle1. At the NPC, Gle1 also binds Nup42, but Nup42's molecular function is unclear. Here we employ the power of structure‐function analysis in S. cerevisiae and human (h) cells, and find that the high‐affinity Nup42‐Gle1 interaction is integral to Dbp5 (hDDX19B) activation and efficient mRNA export. The Nup42 carboxy‐terminal domain (CTD) binds Gle1/hGle1B at an interface distinct from the Gle1‐Dbp5/hDDX19B interaction site. A nup42‐CTD/gle1‐CTD/Dbp5 trimeric complex forms in the presence of IP6. Deletion of NUP42 abrogates Gle1‐Dbp5 interaction, and disruption of the Nup42 or IP6 binding interfaces on Gle1/hGle1B leads to defective mRNA export in S. cerevisiae and human cells. In vitro, Nup42‐CTD and IP6 stimulate Gle1/hGle1B activation of Dbp5 and DDX19B recombinant proteins in similar, nonadditive manners, demonstrating complete functional conservation between humans and S. cerevisiae. Together, a highly conserved mechanism governs spatial coordination of mRNP remodeling during export. This has implications for understanding human disease mutations that perturb the Nup42‐hGle1B interaction.   相似文献   

8.
Palma K  Zhang Y  Li X 《Current biology : CB》2005,15(12):1129-1135
Plant disease resistance is the consequence of an innate defense mechanism mediated by Resistance (R) genes [1]. The conserved structure of one class of R protein is reminiscent of Toll-like receptors (TLRs) and Nucleotide binding oligomerization domain (NOD) proteins-immune-response perception modules in animal cells [2, 3, and 4]. The Arabidopsis snc1 (suppressor of npr1-1, constitutive, 1) mutant contains a mutation in a TIR-NBS-LRR-type of R gene that renders resistance responses constitutively active without interaction with pathogens [5]. Few components of the downstream signaling network activated by snc1 are known. To search for regulators of R-gene-mediated resistance, we screened for genetic suppressors of snc1. Three alleles of the mutant mos6 (modifier of snc1, 6) partially suppressed constitutive-resistance responses and immunity to virulent pathogens in snc1. Furthermore, the mos6-1 single mutant exhibited enhanced disease susceptibility to a virulent oomycete pathogen. MOS6, identified by positional cloning, encodes importin alpha3, one of eight alpha importins in Arabidopsis [6]. alpha importins mediate the import of specific proteins across the nuclear envelope. We previously reported that MOS3, a protein homologous to human nucleoporin 96, is required for constitutive resistance in snc1 [7]. Our data highlight an essential role for nucleo-cytoplasmic trafficking, especially protein import, in plant innate immunity.  相似文献   

9.
W A Whalen  J H Yoon  R Shen  R Dhar 《Genetics》1999,152(3):827-838
We have isolated a mutation in nup184(nup184-1) that is synthetically lethal with the mRNA export defective rae1-167 mutation in Schizosaccharomyces pombe. The consequence of the synthetic lethality is a defect in mRNA export. The predicted Nup184p is similar to Nup188p of Saccharomyces cerevisiae, and a Nup184p-GFP fusion localizes to the nuclear periphery in a punctate pattern. The Deltanup184 null mutant is viable and also is synthetically lethal with rae1-167. In a rae1(+) background, both the nup184-1 and Deltanup184 mutations confer sensitivity to growth in nutrient-rich medium (YES) that is accompanied by nuclear poly(A)+ RNA accumulation. Removal of the cAMP-dependent protein kinase, Pka1p, relieved the growth and mRNA export defects of nup184 mutants when grown in nutrient-rich medium. The activation of Pka1p is necessary, but not sufficient, to cause the severe poly(A)+ RNA export defects when nup184 mutant cells are incubated in YES, suggesting nutritional status can also regulate poly(A)+ RNA export. Our results suggest that the regulation of poly(A)+ RNA export by Pka1p kinase appears to be indirect, via a translation-dependent step, but post-translationally in response to YES.  相似文献   

10.
The Nup84p complex consists of five nucleoporins (Nup84p, Nup85p, Nup120p, Nup145p-C, and Seh1p) and Sec13p, a bona fide subunit of the COPII coat complex. We show that a pool of green fluorescent protein-tagged Sec13p localizes to the nuclear pores in vivo, and identify sec13 mutant alleles that are synthetically lethal with nup85Delta and affect the localization of a green fluorescent protein-Nup49p reporter protein. In the electron microscope, sec13 mutants exhibit structural defects in nuclear pore complex (NPC) and nuclear envelope organization. For the assembly of the complex, Nup85p, Nup120p, and Nup145p-C are essential. A highly purified Nup84p complex was isolated from yeast under native conditions and its molecular mass was determined to be 375 kD by quantitative scanning transmission electron microscopy and analytical ultracentrifugation, consistent with a monomeric complex. Furthermore, the Nup84p complex exhibits a Y-shaped, triskelion-like morphology 25 nm in diameter in the transmission electron microscope. Thus, the Nup84p complex constitutes a paradigm of an NPC structural module with distinct composition, structure, and a role in nuclear mRNA export and NPC bio- genesis.  相似文献   

11.
Nuclear pore complexes (NPCs) are vital to nuclear–cytoplasmic communication in eukaryotes. The yeast NPC‐associated TREX‐2 complex, also known as the Thp1–Sac3–Cdc31–Sus1 complex, is anchored on the NPC via the nucleoporin Nup1, and is essential for mRNA export. Here we report the identification and characterization of the putative Arabidopsis thaliana TREX‐2 complex and its anchoring nucleoporin. Physical and functional evidence support the identification of the Arabidopsis orthologs of yeast Thp1 and Nup1. Of three Arabidopsis homologs of yeast Sac3, two are putative TREX‐2 components, but, surprisingly, none are required for mRNA export as they are in yeast. Physical association of the two Cdc31 homologs, but not the Sus1 homolog, with the TREX‐2 complex was observed. In addition to identification of these TREX‐2 components, direct interactions of the Arabidopsis homolog of DSS1, which is an established proteasome component in yeast and animals, with both the TREX‐2 complex and the proteasome were observed. This suggests the possibility of a link between the two complexes. Thus this work has identified the putative Arabidopsis TREX‐2 complex and provides a foundation for future studies of nuclear export in Arabidopsis.  相似文献   

12.
Nup159p/Rat7p is an essential FG repeat–containing nucleoporin localized at the cytoplasmic face of the nuclear pore complex (NPC) and involved in poly(A)+ RNA export and NPC distribution. A detailed structural–functional analysis of this nucleoporin previously demonstrated that Nup159p is anchored within the NPC through its essential carboxyl-terminal domain. In this study, we demonstrate that Nup159p specifically interacts through this domain with both Nsp1p and Nup82p. Further analysis of the interactions within the Nup159p/Nsp1p/Nup82p subcomplex using the nup82Δ108 mutant strain revealed that a deletion within the carboxyl-terminal domain of Nup82p prevents its interaction with Nsp1p but does not affect the interaction between Nup159p and Nsp1p. Moreover, immunofluorescence analysis demonstrated that Nup159p is delocalized from the NPC in nup82Δ108 cells grown at 37°C, a temperature at which the Nup82Δ108p mutant protein becomes degraded. This suggests that Nup82p may act as a docking site for a core complex composed of the repeat-containing nucleoporins Nup159p and Nsp1p. In vivo transport assays further revealed that nup82Δ108 and nup159-1/rat7-1 mutant strains have little if any defect in nuclear protein import and protein export. Together our data suggest that the poly(A)+ RNA export defect previously observed in nup82 mutant cells might be due to the loss from the NPCs of the repeat-containing nucleoporin Nup159p.  相似文献   

13.
Zhang Y  Li X 《The Plant cell》2005,17(4):1306-1316
The Arabidopsis thaliana suppressor of npr1-1, constitutive 1 (snc1) mutant contains a gain-of-function mutation in a Toll Interleukin1 receptor-nucleotide binding-Leu-rich repeat-type resistance gene (R-gene), which leads to constitutive activation of disease resistance response against pathogens. In a screen for suppressors of snc1, a recessive mutation, designated mos3 (for modifier of snc1,3), was found to suppress the constitutive pathogenesis-related gene expression and resistance to virulent Pseudomonas syringae maculicola ES4326 and Peronospora parasitica Noco2 in snc1. In addition, mos3 is also compromised in resistance mediated by Resistance to Peronospora parasitica 4 (RPP4), Resistance to Pseudomonas syringae pv maculicola (RPM1), and Resistance to Pseudomonas syringae 4 (RPS4). Single mutant mos3 plants exhibited enhanced disease susceptibility to P. s. pv maculicola ES4326, suggesting that MOS3 is required for basal resistance to pathogens as well. mos3-1 was identified by map-based cloning, and it encodes a protein with high sequence similarity to human nucleoporin 96. Localization of the MOS3-green fluorescent protein fusion to the nuclear envelope further indicates that MOS3 may encode a nucleoporin, suggesting that nuclear and cytoplasmic trafficking plays an important role in both R-gene-mediated and basal disease resistance.  相似文献   

14.
IMPORTIN-α3/MOS6 (MODIFIER OF SNC1, 6) is one of nine importin-α isoforms in Arabidopsis that recruit nuclear localization signal-containing cargo proteins to the nuclear import machinery. IMP-α3/MOS6 is required genetically for full autoimmunity of the nucleotide-binding leucine-rich repeat immune receptor mutant snc1 (suppressor of npr1-1, constitutive 1) and MOS6 also contributes to basal disease resistance. Here, we investigated the contribution of the other importin-α genes to both types of immune responses, and we analyzed potential interactions of all importin-α isoforms with SNC1. By using reverse-genetic analyses in Arabidopsis and protein−protein interaction assays in Nicotiana benthamiana, we provide evidence that among the nine α-importins in Arabidopsis, IMP-α3/MOS6 is the main nuclear transport receptor of SNC1, and that IMP-α3/MOS6 is required selectively for autoimmunity of snc1 and basal resistance to mildly virulent Pseudomonas syringae in Arabidopsis.  相似文献   

15.
Xu S  Zhang Z  Jing B  Gannon P  Ding J  Xu F  Li X  Zhang Y 《PLoS genetics》2011,7(6):e1002159
Transportin-SR (TRN-SR) is a member of the importin-β super-family that functions as the nuclear import receptor for serine-arginine rich (SR) proteins, which play diverse roles in RNA metabolism. Here we report the identification and cloning of mos14 (modifier of snc1-1, 14), a mutation that suppresses the immune responses conditioned by the auto-activated Resistance (R) protein snc1 (suppressor of npr1-1, constitutive 1). MOS14 encodes a nuclear protein with high similarity to previously characterized TRN-SR proteins in animals. Yeast two-hybrid assays showed that MOS14 interacts with AtRAN1 via its N-terminus and SR proteins via its C-terminus. In mos14-1, localization of several SR proteins to the nucleus was impaired, confirming that MOS14 functions as a TRN-SR. The mos14-1 mutation results in altered splicing patterns of SNC1 and another R gene RPS4 and compromised resistance mediated by snc1 and RPS4, suggesting that nuclear import of SR proteins by MOS14 is required for proper splicing of these two R genes and is important for their functions in plant immunity.  相似文献   

16.
17.
Zhang Y  Cheng YT  Bi D  Palma K  Li X 《Current biology : CB》2005,15(21):1936-1942
Innate immunity is critical for sensing and defending against microbial infections in multicellular organisms. In plants, disease resistance genes (R genes) play central roles in recognizing pathogens and initiating downstream defense cascades. Arabidopsis SNC1 encodes a TIR-NBS-LRR-type R protein with a similar structure to nucleotide binding oligomerization domain (Nod) proteins in animals. A point mutation in the region between the NBS and LRR of SNC1 results in constitutive activation of defense responses in the snc1 mutant. Here, we report the identification and characterization of mos2-1, a mutant suppressing the constitutive defense responses in snc1. Analysis of mos2 single mutants indicated that it is not only required for resistance specified by multiple R genes, but also for basal resistance. Map-based cloning of MOS2 revealed that it encodes a novel nuclear protein that contains one G-patch and two KOW domains and has homologs across the animal kingdom. The presence of both G-patch and KOW domains in the MOS2 protein suggests that it probably functions as an RNA binding protein critical for plant innate immunity. Our discovery on the biological functions of MOS2 will shed light on functions of the MOS2 homologs in animals, where they may also play important roles in innate immunity.  相似文献   

18.
19.
20.
A double lipid bilayer separating the nucleus from the cytoplasm, termed the nuclear envelope, is a defining feature of eukaryotes. Nucleocytoplasmic transport of macromolecules through the nuclear pores enables fine-tuned regulation of biologic processes. All mature mRNAs are delivered to the cytoplasm from the nucleus via an mRNA export pathway. Much work has been done in yeast and animals to study the machinery of mRNA export. However, until recently, research on plant mRNA export has been quite limited. Genetic, bioinformatic, and biochemical investigations have expanded our understanding of the mRNA export process in plants. Here, we review recent progress that has been made elucidating the components of the mRNA export pathway in plants. MOS3 (MODIFIER OF SNC1, 3) /AtNup96 and AtNup160 are both components of the highly conserved Nup107–160 nucleoporin complex and were shown to play key roles in mRNA export. MOS11 (MODIFIER OF SNC1, 11), which is homologous to the RNA helicase enhancer CIP29 in human, was recently found to be involved in the same pathway as MOS3. A DEAD Box RNA helicase, LOS4 (low expression of osmotically responsive genes 4) was also found to play a role in the mRNA export process, putatively by carrying mRNA molecules through the nuclear envelope. Recently, a protein complex homologous to the yeast TREX-2 complex was also found to play important roles in mRNA export in plants. It appears that most players in the mRNA export pathway are highly conserved among plants, yeast and animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号