首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ability of Escherichia coli to colonize both intestinal and extraintestinal sites is driven by the presence of specific virulence factors, among which are the autotransporter (AT) proteins. Members of the trimeric AT adhesin family are important virulence factors for several gram-negative pathogens and mediate adherence to eukaryotic cells and extracellular matrix (ECM) proteins. In this study, we characterized a new trimeric AT adhesin (UpaG) from uropathogenic E. coli (UPEC). Molecular analysis of UpaG revealed that it is translocated to the cell surface and adopts a multimeric conformation. We demonstrated that UpaG is able to promote cell aggregation and biofilm formation on abiotic surfaces in CFT073 and various UPEC strains. In addition, UpaG expression resulted in the adhesion of CFT073 to human bladder epithelial cells, with specific affinity to fibronectin and laminin. Prevalence analysis revealed that upaG is strongly associated with E. coli strains from the B2 and D phylogenetic groups, while deletion of upaG had no significant effect on the ability of CFT073 to colonize the mouse urinary tract. Thus, UpaG is a novel trimeric AT adhesin from E. coli that mediates aggregation, biofilm formation, and adhesion to various ECM proteins.  相似文献   

2.
3.
Enteropathogenic E. coli (EPEC) belongs to a group of bacterial pathogens that induce actin accumulation beneath adherent bacteria. We found that EPEC adherence to epithelial cells mediates the formation of fingerlike pseudopods (up to 10 microm) beneath bacteria. These actin-rich structures also contain tyrosine phosphorylated host proteins concentrated at the pseudopod tip beneath adherent EPEC. Intimate bacterial adherence (and pseudopod formation) occurred only after prior bacterial induction of tyrosine phosphorylation of an epithelial membrane protein, Hp90, which then associates directly with an EPEC adhesin, intimin. These interactions lead to cytoskeletal nucleation and pseudopod formation. This is the first example of a bacterial pathogen that triggers signals in epithelial cells which activates receptor binding activity to a specific bacterial ligand and subsequent cytoskeletal rearrangement.  相似文献   

4.
We have identified and characterized a protein of enterohaemorrhagic Escherichia coli (EHEC) serotype O157:H7 that shares homology with antigen 43 and AIDA-I of E. coli. The gene encoding this protein consists of a 2850 bp open reading frame and was named cah for calcium binding antigen 43 homologue. The prototype EHEC strain EDL933 possesses identical duplicate copies of cah (cah1 and cah2), which showed 100% identity at the nucleotide level. We showed that E. coli K-12 containing the recombinant cah gene produced two proteins, an approximately 80 kDa outer membrane protein and a 43.0 kDa heat-extractable protein. The Cah protein contains a predicted 52-amino-acid extended signal sequence found in several autotransporter proteins, and N-terminal sequencing data indicated that the 43.0 kDa passenger protein was derived from cleavage of the signal sequence from alanine at position 53. Phenotypes such as autoaggregation and change in bacterial shape were observed when a recombinant plasmid containing the cah gene was introduced into a laboratory E. coli strain, and these phenotypes were eliminated upon mutation of the cah gene. The passenger domain contains six domains found in calcium-binding proteins, and the recombinant Cah passenger protein bound 45Ca2+. In E. coli O157:H7, Cah is a heat-extractable protein, the expression of which is induced in minimal essential media and under divalent ion-depleting conditions; it also participates in the formation of biofilms. Our results provide insight into the expression, secretion and preliminary features of the calcium-binding Cah autotransporter protein of EHEC O157:H7.  相似文献   

5.
Trimeric autotransporter adhesins (TAAs) comprise one of the secretion pathways of the type V secretion system. The mechanism of their translocation across the outer membrane remains unclear, but it most probably occurs by the formation of a hairpin inside the β-barrel translocation unit, leading to transportation of the passenger domain from the C terminus to the N terminus through the lumen of the β-barrel. We further investigated the phenomenon of autotransportation and the rules that govern it. We showed by coexpressing different Escherichia coli immunoglobulin-binding (Eib) proteins that highly similar TAAs could form stochastically mixed structures (heterotrimers). We further investigated this phenomenon by coexpressing two more distantly related TAAs, EibA and YadA. These, however, did not form heterotrimers; indeed, coexpression was lethal to the cells, leading to elimination of one or another of the genes. However, substituting in either protein the barrel of the other one so that the barrels were identical led to formation of heterotrimers as for Eibs. Our work shows that trimerization of the β-barrel, but not the passenger domain, is necessary and sufficient for TAA secretion while the passenger domain is not.  相似文献   

6.
Enterohaemorrhagic Escherichia coli (EHEC) belongs to a family of pathogens that cause attaching and effacing (A/E) lesion on target cells. The EspB protein of EHEC is translocated both to the host cell cytoplasm and to the membrane, and is essential for the signalling events leading to A/E lesion. To determine the actual role of EspB in this process, we tried to identify the EspB binding partner of the host cell protein, using a yeast two-hybrid assay, and obtained a cytoskeletal-associated protein, α -catenin. The α -catenin bound directly to the N-terminal region of EspB, both in solid (overlay assay) and solution (pull-down assay) phases, and it was recruited to the EHEC adherence site, dependent on EspB. Expression of the N-terminal region of EspB, as well as the whole EspB in host cells, inhibited F-actin accumulation on the adherence site. We conclude that EspB recruits α -catenin at the EHEC adherence site by direct interaction, and that the recruitment of α -catenin is essential for EHEC-induced A/E lesion formation.  相似文献   

7.
The Escherichia coli Ig-binding (Eib) proteins are trimeric autotransporter adhesins (TAAs) and receptors for IgG Fc. We present the structure of a large fragment of the passenger domain of EibD, the first TAA structure to have both a YadA-like head domain and the entire coiled-coil stalk. The stalk begins as a right-handed superhelix, but switches handedness halfway down. An unexpected β-minidomain joins the two and inserts a ~120° rotation such that there is no net twist between the beginning and end of the stalk. This may be important in folding and autotransport. The surprisingly large cavities we found in EibD and other TAAs may explain how TAAs bend to bind their ligands. We identified how IgA and IgG bind and modeled the EibD-IgG Fc complex. We further show that EibD promotes autoagglutination and biofilm formation and forms a fibrillar layer covering the cell surface making zipper-like contacts between cells.  相似文献   

8.
Adherence of intestinal pathogens, including Escherichia coli O157:H7, to human intestinal epithelial cells is a key step in pathogenesis. Probiotic bacteria, including Lactobacillus helveticus R0052 inhibit the adhesion of E. coli O157:H7 to epithelial cells, a process which may be related to specific components of the bacterial surface. Surface-layer proteins (Slps) are located in a paracrystalline layer outside the bacterial cell wall and are thought to play a role in tissue adherence. However, the ability of S-layer protein extract derived from probiotic bacteria to block adherence of enteric pathogens has not been investigated. Human epithelial (HEp-2 and T84) cells were treated with S-layer protein extract alone, infected with E. coli O157:H7, or pretreated with S-layer protein extract prior to infection to determine their importance in the inhibition of pathogen adherence. The effects of S-layer protein extracts were characterized by phase-contrast and immunofluorescence microscopy and measurement of the transepithelial electrical resistance of polarized monolayers. Pre-treatment of host epithelial cells with S-layer protein extracts prior to E. coli O157:H7 infection decreased pathogen adherence and attaching-effacing lesions in addition to preserving the barrier function of monolayers. These in vitro studies indicate that a non-viable constituent derived from a probiotic strain may prove effective in interrupting the infectious process of an intestinal pathogen.  相似文献   

9.
Enterohaemorrhagic Escherichia coli (EHEC) are food-borne intestinal pathogens with a low infectious dose. Adhesion of some EHEC strains to epithelial cells is attributed, in part, to intimin, but other factors may be required for the intestinal colonizing ability of these bacteria. In order to identify additional adherence factors of EHEC, we generated transposon mutants of a clinical EHEC isolate of serotype O111:H-, which displayed high levels of adherence to cultured Chinese hamster ovary (CHO) cells. One mutant was markedly deficient in CHO cell adherence, human red blood cell agglutination and autoaggregation. Sequence analysis of the gene disrupted in this mutant revealed a 9669 bp novel chromosomal open reading frame (ORF), which was designated efa1, for EHEC factor for adherence. efa1 displayed 28% amino acid identity with the predicted product of a recently described ORF from the haemolysin-encoding plasmid of EHEC O157:H7. The amino termini of the putative products of these two genes exhibit up to 38% amino acid similarity to Clostridium difficile toxins A and B. efa1 occurred within a novel genetic locus, at least 15 kb in length, which featured a low G+C content, several insertion sequence homologues and a homologue of the Shigella flexneri enterotoxin ShET2. DNA probes prepared from different regions of efa1 hybridized with all of 116 strains of attaching-effacing E. coli (AEEC) of a variety of serotypes, including enteropathogenic E. coli (EPEC) and EHEC, but with none of 91 non-AEEC strains. Nevertheless, efa1 was not required for the attachment-effacement phenotype, and the efa1 locus was not physically linked to the locus for enterocyte effacement (LEE) pathogenicity island, which is responsible for this phenotype in EPEC. These findings suggest that efa1 encodes a novel virulence-associated determinant of AEEC, which contributes to the adhesive capacity of these bacteria.  相似文献   

10.

Background

Pathogenic bacteria adhere to the host cell surface using a family of outer membrane proteins called Trimeric Autotransporter Adhesins (TAAs). Although TAAs are highly divergent in sequence and domain structure, they are all conceptually comprised of a C-terminal membrane anchoring domain and an N-terminal passenger domain. Passenger domains consist of a secretion sequence, a head region that facilitates binding to the host cell surface, and a stalk region.

Methodology/Principal Findings

Pathogenic species of Burkholderia contain an overabundance of TAAs, some of which have been shown to elicit an immune response in the host. To understand the structural basis for host cell adhesion, we solved a 1.35 Å resolution crystal structure of a BpaA TAA head domain from Burkholderia pseudomallei, the pathogen that causes melioidosis. The structure reveals a novel fold of an intricately intertwined trimer. The BpaA head is composed of structural elements that have been observed in other TAA head structures as well as several elements of previously unknown structure predicted from low sequence homology between TAAs. These elements are typically up to 40 amino acids long and are not domains, but rather modular structural elements that may be duplicated or omitted through evolution, creating molecular diversity among TAAs.

Conclusions/Significance

The modular nature of BpaA, as demonstrated by its head domain crystal structure, and of TAAs in general provides insights into evolution of pathogen-host adhesion and may provide an avenue for diagnostics.  相似文献   

11.
AIM: To evaluate the potential for polyclonal antibodies targeting enterohaemorrhagic Escherichia coli (EHEC) virulence determinants to prevent colonization of host cells by E. coli O157:H7. METHODS AND RESULTS: Rats and laying hens were immunized with recombinant proteins from E. coli O157:H7, EspA, C-terminal intimin or EscF. Rat antisera (IgG) or chicken egg powders (IgY) were assessed for their ability to inhibit growth and colonization-associated processes of E. coli O157:H7. Mammalian antisera with antibodies to intimin, EspA or EscF effectively reduced adherence of the pathogen to HeLa cells (P<0.05) and prevented type III secretion of Tir. Similarly, HeLa cells treated with chicken egg powder containing antibodies against intimin or EspA were protected from EHEC adherence (P<0.05). Neither egg nor rat antibody preparations had any antibacterial effect on the growth of EHEC (P>0.05). CONCLUSIONS: Antibody preparations targeting EHEC adherence-associated factors were effective at preventing adhesion and intimate colonization-associated events. SIGNIFICANCE AND IMPACT OF THE STUDY: This work indicates that immunotherapy with anti-adherence antibodies can reduce E. coli O157:H7 colonization of host cells. Passive immunization with specific antibodies may have the potential to reduce E. coli O157:H7 colonization in hosts such as cattle or humans.  相似文献   

12.
Enterohemorrhagic Escherichia coli (EHEC) is a water- and food-borne pathogen that causes hemorrhagic colitis. EHEC uses a type III secretion system (T3SS) to translocate effector proteins that subvert host cell function. T3SS-substrates encoded outside of the locus of enterocyte effacement are important to E. coli pathogenesis. We discovered an EHEC secreted protein, NleF, encoded by z6020 in O-island 71 of E. coli EDL933 that we hypothesized to be a T3SS substrate. Experiments are presented that probe the function of NleF and its role in virulence. Immunoblotting of secreted and translocated proteins suggest that NleF is secreted by the T3SS and is translocated into host cells in vitro where it localizes to the host cytoplasm. Infection of HeLa cells with E. coli possessing or lacking nleF and transient expression of NleF-GFP via transfection did not reveal a significant role for NleF in several assays of bacterial adherence, host cytoskeletal remodeling, or host protein secretion. However, competitive coinfection of mice with Citrobacter rodentium strains possessing or lacking nleF suggested a contribution of NleF to bacterial colonization. Challenge of gnotobiotic piglets also revealed a role for NleF in colonization of the piglet colon and rectoanal junction.  相似文献   

13.
BACKGROUND: In the pathogenesis of Escherichia coli urinary tract infections (UTIs) in women, infecting bacteria adhere to vaginal and periurethral epithelial cells prior to ascending to the bladder and causing infection. Complex interactions among specific bacterial adhesins and various host factors appear to influence adherence of E. coli to mucosal surfaces such as the urogenital epithelium. To conduct population-based studies assessing host epithelial cell determinants that influence bacterial attachment, a method of measuring bacterial adherence utilizing clinically derived epithelial cell samples is needed. METHODS: We developed and standardized an efficient, accurate, high-throughput method for analyzing the adherence of uropathogenic E. coli to clinical samples containing a large number of exfoliated vaginal epithelial cells (VEC). Three wild-type E. coli strains isolated from women with UTI (IA2 expressing pap-encoded, class II fimbriae only; F24 expressing pap-encoded, class II and type 1 fimbriae; and F20, without pap-encoded or type I fimbriae) were transformed with gfpmut3, encoding green fluorescent protein, incubated with VECs, and analyzed by flow cytometry. RESULTS: Enumeration of the binding of each E. coli strain to 10,000 VECs showed reproducible, highly significant strain-dependent differences in adherence to VECs. Differential analysis of the relative contributions of type 1 pili and P fimbrial-mediated binding to the adherence phenotype was performed. It demonstrated that IA2 binding was dependent entirely on P fimbriae, whereas F24 binding was dependent on both P and type 1 fimbriae. CONCLUSIONS: This method has great potential for use in high-throughput analyses of clinically derived epithelial cell samples and will be valuable in population-based investigations of host-parasite interactions in UTI utilizing VECs collected from specific patient groups.  相似文献   

14.
Advances in the understanding of the pathogenesis of enterohaemorrhagic Escherichia coli (EHEC) have greatly benefited from the use of human epithelial cell lines under aerobic conditions. However, in the target site of EHEC infection, the human intestine, conditions are microaerobic. In our study we used polarized human colon carcinoma cells in a vertical diffusion chamber system to investigate the influence of reduced apical oxygen levels on EHEC colonization. While apical microaerobiosis did not affect cell integrity and barrier function, numbers of adherent bacteria were significantly increased under low compared with high apical oxygen concentrations. In addition, expression and translocation of EHEC type III secreted (T3S) effector proteins was considerably enhanced under microaerobic conditions and dependent on the presence of host cells. Increased colonization was mainly mediated via EspA as adherence levels of an isogenic deletion mutant were not influenced by low oxygen levels. Other potential adherence factors (E. coli common pilus and flagella) were only minimally expressed under high and low oxygen levels. Addition of nitrate and trimethylamine N‐oxide as terminal electron acceptors for anaerobic respiration failed to further increase bacterial colonization or T3S under microaerobiosis. This study indicates that EHEC T3S and colonization are enhanced by the microaerobic environment in the gut and therefore might be underestimated in conventional aerobic cell culture systems.  相似文献   

15.
16.
The immunoglobulin A protease family of secreted proteins are derived from self-translocating polyprotein precursors which contain C-terminal domains promoting the translocation of the N-terminally attached passenger domains across gram-negative bacterial outer membranes. Computer predictions identified the C-terminal domain of the Escherichia coli adhesin involved in diffuse adherence (AIDA-I) as a member of the autotransporter family. A model of the beta-barrel structure, proposed to be responsible for outer membrane translocation, served as a basis for the construction of fusion proteins containing heterologous passengers. Autotransporter-mediated surface display (autodisplay) was investigated for the cholera toxin B subunit and the peptide antigen tag PEYFK. Up to 5% of total cellular protein was detectable in the outer membrane as passenger autotransporter fusion protein synthesized under control of the constitutive P(TK) promoter. Efficient presentation of the passenger domains was demonstrated in the outer membrane protease T-deficient (ompT) strain E. coli UT5600 and the ompT dsbA double mutant JK321. Surface exposure was ascertained by enzyme-linked immunosorbent assay, immunofluorescence microscopy, and immunogold electron microscopy using antisera specific for the passenger domains. In strain UT2300 (ompT+), the passenger domains were released from the cell surface by the OmpT protease at a novel specific cleavage site, R / V. Autodisplay represents a useful tool for future protein translocation studies with interesting biotechnological possibilities.  相似文献   

17.
Enteric neurotransmitters can modulate the biodefensive functions of the intestinal mucosa, but their role in mucosal interactions with enteropathogens is not well defined. Here we tested the hypothesis that norepinephrine (NE) modulates interactions between enterohemorrhagic Escherichia coli O157:H7 (EHEC) and the colonic epithelium. Mucosal sheets from porcine distal colon were mounted in Ussing chambers. Drugs and an inoculum of either Shiga toxin-negative or -positive EHEC were added to the contraluminal and luminal bathing medium, respectively. After 90 min, adherent bacteria were quantified by an adherence assay and by immunohistochemical methods; short-circuit current (I(sc)) was measured continuously to assess changes in active ion transport. NE-treated tissues exhibited concentration-dependent increases in I(sc) and EHEC adherence. NE did not alter adherence of a rodent-adapted, noninfectious E. coli strain or two porcine-adapted non-O157 E. coli strains. The actions of NE on EHEC adherence but not I(sc) were prevented by the alpha-adrenergic antagonist yohimbine and the PKA activator Sp-8-bromoadenosine-3',5'-cyclic monophosphorothioate. Like NE, the PKA inhibitor Rp-8-bromoadenosine-3',5'-cyclic monophosphorothioate or indirectly acting sympathomimetic agents increased EHEC adherence. Nerve fibers immunoreactive for the NE-synthesizing enzymes tyrosine hydroxylase and dopamine beta-hydroxylase appeared to innervate the colonic epithelium. EHEC-like immunoreactivity on the colonic surface had the appearance of bacterial microcolonies and increased after NE treatment by a phentolamine-sensitive mechanism. Through interactions with alpha(2)-adrenergic receptors, NE appears to increase EHEC adherence to the colonic mucosa. Changes in sympathetic neural outflow may alter intestinal susceptibility to infection.  相似文献   

18.
Fifty nine Escherichia coli strains obtained from patients with upper or lower urinary tract infections (UTI) and 30 E. coli strains isolated from stools of healthy individuals were tested for hemolytic and cytotoxic activities. Forty four percent of uropathogenic E. coli (UPEC) and 3.3% of fecal E. coli were hemolytic. Among the hemolytic UPEC, 92% produced alpha-hemolysin. A cytotoxic activity was detected in culture filtrates of 71% of UPEC strains and 30% of fecal E. coli. No relationship was found between cytotoxic and hemolytic activities or between cytotoxic titers and UPEC origin (upper or lower UTI). E. coli cytotoxin has a cytocidal activity against some epithelioid cultured cell lines (Vero, HeLa and Hep-2) but was almost inactive for avian-fibroblast cells. Cytotoxin-affected cells appeared rounded, refractile and detached from the surface of the vessel. Some characteristics exhibited by the cytotoxin as the morphological response induced on cells, the increasing of cytopathic effect with time, its irreversible cytocidal activity and its heat-lability resemble the properties described for E. coli Verotoxin (VT). Adherence to uroepithelial cells is recognized as a virulence factor for UPEC. It is suggested that cell damage by cytotoxic and adhering UPEC might contribute to E. coli virulence to urinary tract.  相似文献   

19.
Burkholderia cepacia complex (Bcc) bacteria are a problematic group of microorganisms causing severe infections in patients with Cystic Fibrosis. In early stages of infection, Bcc bacteria must be able to adhere to and colonize the respiratory epithelium. Although this is not fully understood, this primary stage of infection is believed to be in part mediated by a specific type of adhesins, named trimeric autotransporter adhesins (TAAs). These homotrimeric proteins exist on the surface of many Gram negative pathogens and often mediate a number of critical functions, including biofilm formation, serum resistance and adherence to an invasion of host cells. We have previously identified in the genome of the epidemic clinical isolate B. cenocepacia J2315, a novel cluster of genes putatively encoding three TAAs (BCAM0219, BCAM0223 and BCAM0224). In this study, the genomic organization of the TAA cluster has been determined. To further address the direct role of the putative TAA BCAM0223 in B. cenocepacia pathogenicity, an isogenic mutant was constructed via insertional inactivation. The BCAM0223::Tp mutant is deficient in hemagglutination, affected in adherence to vitronectin and in biofilm formation and showed attenuated virulence in the Galleria mellonella model of infection. Moreover, the BCAM0223::Tp mutant also showed a significant reduction in its resistance to human serum as well as in adherence, but not in invasion of, cultured human bronchial epithelial cells. Altogether these results demonstrate that the BCAM0223 protein is a multifunctional virulence factor that may contribute to the pathogenicity of B. cenocepacia.  相似文献   

20.
Infectious diseases due to enterohemorrhagic Escherichia coli (EHEC) are characterized by diarrhea, hemorrhagic colitis and hemolytic uremic syndrome. The adherence of EHEC on intestinal epithelial cells is a first step for developing these diseases. In the present study, we examined whether EHEC O157:H7 adhere to intestinal epithelial cells of mice and cause F-actin accumulation in the epithelial cells following the intragastric inoculation of the pathogen. Fecal shedding of the EHEC O157:H7 strain was observed in ICR mice up to 3 weeks. Fecal shedding periods of the type III secretion system-related gene (espA and sepL) deletion mutants were clearly shorter than that of the wild-type EHEC O157:H7 strain. The EHEC O157:H7 colonies were found on the epithelial surfaces of the ceca in association with F-actin accumulation beneath the attached bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号