首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Steinernema carpocapsae infective juvenile (IJ) nematodes are intestinally colonized by mutualistic Xenorhabdus nematophila bacteria. During IJ development, a small number of ingested X. nematophila cells initiate colonization in an anterior region of the intestine termed the vesicle and subsequently multiply within this host niche. We hypothesize that efficient colonization of a high percentage of S. carpocapsae individuals (typically>85%) is facilitated by bacterial adherence to a site(s) in the nematode intestine. We provide evidence that the adherence site is a structure in the lumen of the IJ vesicle that we have termed the intravesicular structure (IVS). The IVS is an untethered cluster of anucleate spherical bodies that co-localizes with colonizing X. nematophila cells, but does not require X. nematophila for its formation. Colocalization with the IVS is readily apparent in IJs colonized by X. nematophila mutants that initiate intestinal colonization but fail to proliferate normally, suggesting that bacterial-IVS interaction occurs early in the colonization process. Treatment with insect haemolymph induces anal release of X. nematophila from colonized IJs and induces release of the IVS from uncolonized S. carpocapsae IJs. Released IVS were probed with several carbohydrate-specific lectins. One lectin, wheat-germ agglutinin, reacts strongly with a mucus-like substance that is present around individual spheres in the aggregate IVS. Potential roles for the IVS in mediating X. nematophila colonization of the nematode intestine are discussed.  相似文献   

3.
4.
The association between the bacterium Xenorhabdus nematophila and the nematode Steinernema carpocapsae is emerging as a model system to understand mutually beneficial symbioses. X. nematophila, but not other Xenorhabdus species, colonize a discrete region of a specific developmental stage of S. carpocapsae nematodes. Recent progress has led to the identification of bacterial genes necessary for colonization. Furthermore, new details have been elucidated regarding the morphology and physiology of the colonization site and the bacteria within it. A deeper understanding of the molecular mechanisms underlying the association of X. nematophila will undoubtedly yield insights into fundamental processes underlying the ubiquitous association of microbes with animals.  相似文献   

5.
One stage in the symbiotic interaction between the bacterium Xenorhabdus nematophila and its nematode host, Steinernema carpocapsae, involves the species-specific colonization of the nematode intestinal vesicle by the bacterium. To characterize the bacterial molecular determinants that are essential for vesicle colonization, we adapted and applied a signature-tagged mutagenesis (STM) screen to this system. We identified 15 out of 3000 transposon mutants of X. nematophila with at least a 15-fold reduction in average vesicle colonization. These 15 mutants harbour disruptions in nine separate loci. Three of these loci have predicted open reading frames (ORFs) with similarity to genes (rpoS, rpoE, lrp) encoding regulatory proteins; two have predicted ORFs with similarity to genes (aroA, serC) encoding amino acid biosynthetic enzymes; one, designated nilB (nematode intestine localization), has an ORF with similarity to a gene encoding a putative outer membrane protein (OmpU) in Neisseria; and three, nilA, nilC and nilD, have no apparent homologues in the public database. nilA, nilB and nilC are linked on a single 4 kb locus. nilB and nilC are > 104-fold reduced in their ability to colonize the nematode vesicle and are predicted to encode membrane-localized proteins. The nilD locus contains an extensive repeat region and several small putative ORFs. Other than reduced colonization, the nilB, nilC and nilD mutants did not display alterations in any other phenotype tested, suggesting a specific role for these genes in allowing X. nematophila to associate with the nematode host.  相似文献   

6.
Xenorhabdus nematophila colonizes the intestinal tract of infective-juvenile (IJ) stage Steinernema carpocapsae nematodes. During colonization, X. nematophila multiplies within the lumen of a discrete region of the IJ intestine termed the vesicle. To begin to understand bacterial nutritional requirements during multiplication in the IJ vesicle, we analysed the colonization behaviour of several X. nematophila metabolic mutants, including amino acid and vitamin auxotrophs. X. nematophila mutants defective for para-aminobenzoate, pyridoxine or l-threonine biosynthesis exhibit substantially decreased colonization of IJs (0.1-50% of wild-type colonization). Analysis of gfp-labelled variants revealed that those mutant cells that can colonize the IJ vesicle differ noticeably from wild-type X. nematophila. One aberrant colonization phenotype exhibited by the metabolic mutants tested, but not wild-type X. nematophila, is a spherical shape indicative of apparently non-viable X. nematophila cells within the vesicle. Because these spherical cells appear to have initiated colonization but failed to proliferate, we term this type of colonization 'abortive'. In a portion of IJs grown on para-aminobenzoate auxotrophs, X. nematophila does not exhibit abortive colonization but rather reduced growth and filamentous cell morphology. Several mutants with defects in other amino acid, vitamin and nutrient metabolism pathways colonize IJs to wild-type levels suggesting that the IJ vesicle is replete with respect to a number of nutrients.  相似文献   

7.
8.
Xenorhabdus nematophila is a mutualist of entomopathogenic nematodes and a pathogen of insects. To begin to examine the role of pyrimidine salvage in nutrient exchange between X. nematophila and its hosts, we identified and mutated an X. nematophila tdk homologue. X. nematophila tdk mutant strains had reduced virulence toward Manduca sexta insects and a competitive defect for nematode colonization in plate-based assays. Provision of a wild-type tdk allele in trans corrected the defects of the mutant strain. As in Escherichia coli, X. nematophila tdk encodes a deoxythymidine kinase, which converts salvaged deoxythymidine and deoxyuridine nucleosides to their respective nucleotide forms. Thus, nucleoside salvage may confer a competitive advantage to X. nematophila in the nematode intestine and be important for normal entomopathogenicity.  相似文献   

9.
10.
The submerged culture of the entomopathogenic nematode Steinernema carpocapsae and its symbiotic bacterium, Xenorhabdus nematophila, was carried out in orbitally agitated bottles using a culture medium containing whey (in grams per litre: 500 whey, 20 yeast extract, 10 dried egg yolk-food grade, 3 sodium chloride, 37 corn oil-food grade). Maximum total viable nematode concentrations of 198,333ml(-1) were achieved within fermentations of 24 days with 64% of the nematode population within the infective juvenile stage (IJ) (126,666ml(-1)) at the end. The kinetics of the bioprocess was well modelled using the four-parameter Sigmoidal model and the corresponding maximum specific rates of nematode production (0.47 day(-1)), carbohydrates consumption (0.0008g(carbohydrates)g(nematodes)(-1)day(-1)) and nitrogen consumption (4.44g(nitrogen)g(nematodes)(-1)day(-1)) are first proposed. Besides, X. nematophila appears to have the capacity of lactose hydrolysis.  相似文献   

11.
The bacterium Xenorhabdus nematophila is an insect pathogen and an obligate symbiont of the nematode Steinernema carpocapsae. X. nematophila makes a biofilm that adheres to the head of the model nematode Caenorhabditis elegans, a capability X. nematophila shares with the biofilms made by Yersinia pestis and Yersinia pseudotuberculosis. As in Yersinia spp., the X. nematophila biofilm requires a 4-gene operon, hmsHFRS. Also like its Yersinia counterparts, the X. nematophila biofilm is bound by the lectin wheat germ agglutinin, suggesting that beta-linked N-acetyl-D-glucosamine or N-acetylneuraminic acid is a component of the extracellular matrix. C. elegans mutants with aberrant surfaces that do not permit Yersinia biofilm attachment also are resistant to X. nematophila biofilms. An X. nematophila hmsH mutant that failed to make biofilms on C. elegans had no detectable defect in symbiotic association with S. carpocapsae, nor was virulence reduced against the insect Manduca sexta.  相似文献   

12.
The tobacco hornworm, Manduca sexta , is a model lepidopteran insect used to study the pathogenic and mutualistic phases of entomopathogenic nematodes (EPNs) and their bacterial symbionts. While intestinal microbial communities could potentially compete with the EPN and its bacterial partner for nutrient resources of the insect, the microbial gut community had not been characterized previously. Here, we show that the midgut of M. sexta raised on an artificial diet contained mostly Gram-positive cocci and coryneforms including Staphylococcus, Pediococcus, Micrococcus and Corynebacterium . Major perturbation in the gut community was observed on addition of antibiotics to the diet. Paenibacillus and several Proteobacteria such as Methylobacterium, Sphingomonas and Acinetobacter were primary genera identified under these conditions. Furthermore, the reproduction of the nematode Steinernema carpocapsae was less efficient, and the level of nematode colonization by its symbiont Xenorhabdus nematophila reduced, in insects reared on a diet containing antibiotics. The effect of antibiotics and perturbation of gut microbiota on nematode reproduction is discussed.  相似文献   

13.
Members of the Steinernema genus of nematodes are colonized mutualistically by members of the Xenorhabdus genus of bacteria. In nature, Steinernema carpocapsae nematodes are always found in association with Xenorhabdus nematophila bacteria. Thus, this interaction, like many microbe-host associations, appears to be species specific. X. nematophila requires the nilA, nilB, and nilC genes to colonize S. carpocapsae. In this work, we showed that of all the Xenorhabdus species examined, only X. nematophila has the nilA, nilB, and nilC genes. By exposing S. carpocapsae to other Xenorhabdus spp., we established that only X. nematophila is able to colonize S. carpocapsae; therefore, the S. carpocapsae-X. nematophila interaction is species specific. Further, we showed that introduction of the nilA, nilB, and nilC genes into other Xenorhabdus species enables them to colonize the same S. carpocapsae host tissue that is normally colonized by X. nematophila. Finally, sequence analysis supported the idea that the nil genes were horizontally acquired. Our findings indicate that a single genetic locus determines host specificity in this bacteria-animal mutualism and that host range expansion can occur through the acquisition of a small genetic element.  相似文献   

14.
beta-Barrel proteins constitute a distinct class of mitochondrial outer membrane proteins. For import into mitochondria, their precursor forms engage the TOM complex. They are then relayed to the TOB complex, which mediates their insertion into the outer membrane. We studied the structure-function relationships of the core component of the TOB complex, Tob55. Tob55 precursors with deletions in the N-terminal domain were not affected in their targeting to and insertion into the mitochondrial outer membrane. Replacement of wild-type Tob55 by these deletion variants resulted in reduced growth of cells, and mitochondria isolated from such cells were impaired in their capacity to import beta-barrel precursors. The purified N-terminal domain was able to bind beta-barrel precursors in a specific manner. Collectively, these results demonstrate that the N-terminal domain of Tob55 recognizes precursors of beta-barrel proteins. This recognition may contribute to the coupling of the translocation of beta-barrel precursors across the TOM complex to their interaction with the TOB complex.  相似文献   

15.
Our current understanding on how pathogens evolve relies on the hypothesis that pathogens' transmission is traded off against host exploitation. In this study, we surveyed the possibility that trade-offs determine the evolution of the bacterial insect pathogen, Xenorhabdus nematophila. This bacterium rapidly kills the hosts it infects and is transmitted from host cadavers to new insects by a nematode vector, Steinernema carpocapsae. In order to detect trade-offs in this biological system, we produced 20 bacterial lineages using an experimental evolution protocol. These lineages differ, among other things, in their virulence towards the insect host. We found that nematode parasitic success increases with bacteria virulence, but their survival during dispersal decreases with the number of bacteria they carry. Other bacterial traits, such as production of the haemolytic protein XaxAB, have a strong impact on nematode reproduction. We then combined the result of our measurements with an estimate of bacteria fitness, which was divided into a parasitic component and a dispersal component. Contrary to what was expected in the trade-off hypothesis, we found no significant negative correlation between the two components of bacteria fitness. Still, we found that bacteria fitness is maximized when nematodes carry an intermediate number of cells. Our results therefore demonstrate the existence of a trade-off in X. nematophila, which is caused, in part, by the reduction in survival this bacterium causes to its nematode vectors.  相似文献   

16.
17.
In this paper, we investigate the level of specialization of the symbiotic association between an entomopathogenic nematode (Steinernema carpocapsae) and its mutualistic native bacterium (Xenorhabdus nematophila). We made experimental combinations on an insect host where nematodes were associated with non-native symbionts belonging to the same species as the native symbiont, to the same genus or even to a different genus of bacteria. All non-native strains are mutualistically associated with congeneric entomopathogenic nematode species in nature. We show that some of the non-native bacterial strains are pathogenic for S. carpocapsae. When the phylogenetic relationships between the bacterial strains was evaluated, we found a clear negative correlation between the effect a bacterium has on nematode fitness and its phylogenetic distance to the native bacteria of this nematode. Moreover, only symbionts that were phylogenetically closely related to the native bacterial strain were transmitted. These results suggest that co-evolution between the partners has led to a high level of specialization in this mutualism, which effectively prevents horizontal transmission. The pathogenicity of some non-native bacterial strains against S. carpocapsae could result from the incapacity of the nematode to resist specific virulence factors produced by these bacteria.  相似文献   

18.
Xenorhabdus nematophila is the symbiotic bacterium of an entomopathogenic nematode, Steinernema carpocapsae. When the nematode enters a target insect, the symbiotic bacteria are released into the hemocoel. After inducing host immunosuppression, the bacteria multiply in the hemocoel and cause fatal septicemia. For optimal field application to control insect pests, culturing mass numbers of the nematodes would be costly. In this study, Bacillus thuringiensis (Bt) was chosen as an alternative natural vector, which would be relatively economical for field application. Bt infection of gut epithelium would form a bacterial passage between the gut lumen and hemocoel, which facilitates the orally fed X. nematophila to infect the hemocoel. Diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), used in this study was tolerant to Bt because only 10% mortality was noted in response to 2 times higher concentration than recommended for commercial B. t. kurstaki, although this species was susceptible only during early instars. The orally fed X. nematophila caused significant mortality to early instars of P. xylostella, but not late instars. When both X. nematophila and Bt were fed to late instars of P. xylostella, they showed significantly enhanced mortality, in which X. nematophila cells were recovered from the hemocoel of the treated P. xylostella. However, when only X. nematophila was fed, no cells were recovered from the hemolymph. This study suggests that X. nematophila can be applied to control P. xylostella in a mixture with Bt in the field without its nematode host.  相似文献   

19.
Xenorhabdus nematophila is a mutualist of entomopathogenic nematodes and a pathogen of insects. To begin to examine the role of pyrimidine salvage in nutrient exchange between X. nematophila and its hosts, we identified and mutated an X. nematophila tdk homologue. X. nematophila tdk mutant strains had reduced virulence toward Manduca sexta insects and a competitive defect for nematode colonization in plate-based assays. Provision of a wild-type tdk allele in trans corrected the defects of the mutant strain. As in Escherichia coli, X. nematophila tdk encodes a deoxythymidine kinase, which converts salvaged deoxythymidine and deoxyuridine nucleosides to their respective nucleotide forms. Thus, nucleoside salvage may confer a competitive advantage to X. nematophila in the nematode intestine and be important for normal entomopathogenicity.  相似文献   

20.
Integral outer membrane transporters of the Omp85/TpsB superfamily mediate the translocation of proteins across, or their integration into, the outer membranes of Gram-negative bacteria, chloroplasts, and mitochondria. The Bordetella pertussis FhaC/FHA couple serves as a model for the two-partner secretion pathway in Gram-negative bacteria, with the TpsB protein, FhaC, being the specific transporter of its TpsA partner, FHA, across the outer membrane. In this work, we have investigated the structure/function relationship of FhaC by analyzing the ion channel properties of the wild type protein and a collection of mutants with varied FHA secretion activities. We demonstrated that the channel is formed by the C-terminal two-thirds of FhaC most likely folding into a beta-barrel domain predicted to be conserved throughout the family. A C-proximal motif that represents the family signature appears essential for pore function. The N-terminal 200 residues of FhaC constitute a functionally distinct domain that modulates the pore properties and may participate in FHA recognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号