首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A number of small, multicopy plasmids from Gram-positive bacteria replicate by an asymmetric rolling-circle mechanism. Previous studies with several of these plasmids have identified a palindromic sequence, SSOA, that acts as the single-strand origin (SSO) for the replication of the lagging-strand DNA. Although not all the SSOA sequences share ONA sequence homology, they are structurally very similar. We have used an in vitro system to study the lagging-strand replication of several plasmids from Gram-positive bacteria using the SSOA sequences of pT181, pE194 and pSN2 as representative of three different groups of Staphylococcus aureus plasmids. In addition, we have investigated the lagging-strand replication of the pUB110 plasmid that contains an alternative single-strand origin, ssou. Our results confirm that RNA polymerase is involved in lagging-strand synthesis from both SSOA and ssou-type lagging-strand origins. Interestingly, while initiation of lagging-strand DNA synthesis of pUB110 occurred predominantly at a single position within ssou, replication of pT181, pSN2 and pE194 plasmids initiated at multiple positions from SSOA.  相似文献   

2.
The pUB110 and pE194 plasmid cointegrates have been isolated and examined in rec+ and recE4 strains of Bacillus subtilis. Cointegrates were shown to be formed by recombination at the specific site present on both parental plasmids as a short region of homology designated RSA. The RSA consists of 63 nucleotides in pE194 and 49 in pUB110; the length of its fully conserved core segment is 10 nucleotides. All cointegrates examined were formed by single crossover event taking place within the core segment, and as a result they have identical nucleotide sequences of recombination junctions. No conversion of mismatched base pairs to nucleotide sequences originally belonging to one of the parental plasmids was found. Though the action of RecE gene did not affect the frequency of cointegrate formation, it was reduced in rec149 host by one order of magnitude. Cointegrates retained their stability during transformation.  相似文献   

3.
Summary The sequence and genetic organization was determined of the 2508 by lactococcal portion of pFX2, which was derived from a crypticLactococcus lactis subsp.lactis plasmid and used as the basis for construction of a series of lactococcal vectors. A lactococcal plasmid plus origin and two replication protein-coding regions (repA andrepB) were located. RepA has a helix-turn-helix motif, a geometry typical of DNA-binding proteins. RepB shows a high degree of homology to the plasmid replication initiation proteins from other gram-positive bacteria andMycoplasma. The transcribed inverted repeat sequence betweenrepA andrepB could form an attenuator to regulate pFX2 replication. Upstream of theori site, and in a region which was non-essential for replication, a 215 by sequence identical to the staphylococcal plasmid pE194 and carrying the RSA site was identified. The genetic organization of this lactococcal plasmid replicon shares significant similarity with pE194 group plasmids.  相似文献   

4.
Summary The illegitimate recombination between Staphylococcus aureus plasmids pE194 (or pGG20, the hybrid between pE194 and Escherichia coli plasmid pBR322) and pBD17 (plasmid pUB110 without HpaII C-fragment) was studied in Bacillus subtilis. Cointegrates were generated with the frequency of 1–3x10-8. Among 22 hybrids analysed 9 types of recombinants were found. Nucleotide sequences of all three parental plasmids were involved in intermolecular recombination. Nucleotide sequencing of recombinant DNA junctions revealed that in 8 cases recombination occurred between short homologous regions (9–15 bp). One recombinant was formed using nonhomologous sites. The similarity was demonstrated between nucleotide sequences of the recombination sites of two types of cointegrates and those used for pE194 integration into the B. subtilis chromosome. Possible mechanisms of illegitimate recombination are discussed.  相似文献   

5.
Characterization of a cryptic plasmid from Lactobacillus plantarum   总被引:11,自引:0,他引:11  
E E Bates  H J Gilbert 《Gene》1989,85(1):253-258
  相似文献   

6.
7.
All known small staphylococcal plasmids possess one or two recombination sites at which site-specific cointegrate formation occurs. One of these sites, RSA, is present on two small multicopy plasmids, pT181 and pE194; it consists of 24 base pairs of identity in the two plasmids, the "core," flanked by some 50 base pairs of decreasing homology. Here we show that recombination at RSA is recA independent and is mediated by a plasmid-encoded, trans-acting protein, Pre (plasmid recombination). Pre-mediated recombination is site specific in that it occurs within the core sequence of RSA in a recA1 host. Recombination also occurs between two intramolecular RSA sites. Unlike site-specific recombination systems encoded by other plasmids, Pre-RSA is not involved in plasmid maintenance.  相似文献   

8.
The nonconjugative streptococcal plasmid pMV158 can be mobilized by the conjugative streptococcal plasmid pIP501. We determined the sequence of the 1.1-kilobase EcoRI fragment of pMV158 to complete the DNA sequence of the plasmid. We showed that an open reading frame, mob (able to encode a polypeptide of 58,020 daltons), is required for mobilization of pMV158. An intergenic region present in the EcoRI fragment contains four lengthy palindromes that are found also in one or more of the staphylococcal plasmids pT181, pE194, and pUB110. One palindromic sequence, palD, which is common to all four plasmids, also appeared to be necessary for mobilization. Circumstantial evidence indicates that this sequence contains both an oriT site and the mob promoter. The Mob protein is homologous in its amino-terminal half to Pre proteins encoded by pT181 and pE194 that were shown by others to be essential for site-specific cointegrative plasmid recombination; their main biological function may be plasmid mobilization.  相似文献   

9.
We present data which indicate that (i) the origin of replication of plasmids pT181 and pC221 can also function as termination signals; (ii) termination of replication occurs when a round of replication initiated either by RepC at the pT181 origin or by RepD at the pC221 origin reaches either of these origins, proving that the two plasmids cross-react for termination of replication; and (iii) the replication initiated at the origin of another staphylococcal plasmid, pE194, does not terminate at the origin of pT181 or pC221, indicating the existence of a specific relationship between the initiation and termination of a replication event.  相似文献   

10.
The complete nucleotide sequence of a naturally occurring Staphylococcus aureus plasmid, pT48 (from S. aureus strain T48), has been determined. The 2475 bp plasmid confers inducible resistance to macrolide-lincosamide-streptogramin B (MLS) type antibiotics. It is similar to the constitutive MLS resistance plasmid, pNE131, from Staphylococcus epidermidis and shows homology with S. aureus plasmids pSN2 and pE194. It contains a palA structure homologous to that on S. aureus plasmid pT181. The open reading frame, ORF B, within the pSN2 homologous region has a frameshifted C-terminus, relative to pNE131, resulting in a smaller, 158 amino acid putative polypeptide. The pE194 homologous region has the ermC resistance determinant and retains the leader region, deleted in pNE131, required for inducible expression of an adenine methylase. Another naturally occurring S. aureus strain, J74, shows constitutive resistance to erythromycin and contains a small plasmid, pJ74, which is similar to pNE131 but with a different deletion in the leader sequence. The results are consistent with the translational attenuation model for ermC expression.  相似文献   

11.
Summary The illegitimate integration of plasmid pGG20 (the hybrid between Staphylococcus aureus plasmid pE194 and Escherichia coli plasmid pBR322) into the Bacillus subtilis chromosome was studied. It was found that nucleotide sequences of both parental plasmids could be involved in this process. The recombinant DNA junctions between plasmid pGG20 and the chromosome were cloned and their nucleotide sequences were determined. The site of recombination located on the pBR322 moiety carried a short region (8 bp) homologous with the site on the chromosome. The nucleotide sequences of the pE194 recombination sites did not share homology with chromosomal sequences involved in the integration process. Two different pathways of illegitimate recombination in B. subtilis are suggested.  相似文献   

12.
The plasmid pE194 (3.7 kilobases) is capable of integrating into the genome of the bacterial host Bacillus subtilis in the absence of the major homology-dependent RecE recombination system. Multiple recombination sites have been identified on both the B. subtilis chromosome and pE194 (J. Hofemeister, M. Israeli-Reches, and D. Dubnau, Mol. Gen. Genet. 189:58-68, 1983). The B. subtilis chromosomal recombination sites were recovered by genetic cloning, and these sites were studied by nucleotide sequence analysis. Recombination had occurred between regions of short nucleotide homology (6 to 14 base pairs) as indicated by comparison of the plasmid and the host chromosome recombination sites with the crossover sites of the integration products. Recombination between the homologous sequences of the plasmid and the B. subtilis genome produced an integrated pE194 molecule which was bounded by direct repeats of the short homology. These results suggest a recombination model involving a conservative, reciprocal strand exchange between the two recombination sites. A preferred plasmid recombination site was found to occur within a 70-base-pair region which contains a GC-rich dyad symmetry element. Five of seven pE194-integrated strains analyzed had been produced by recombination at different locations within this 70-base-pair interval, located between positions 860 and 930 in pE194. On the basis of these data, mechanisms are discussed to explain the recombinational integration of pE194.  相似文献   

13.
pIH01, a small cryptic plasmid from Leuconostoc citreum IH3   总被引:1,自引:0,他引:1  
Park J  Lee M  Jung J  Kim J 《Plasmid》2005,54(2):184-189
A small cryptic plasmid pIH01 from Leuconostoc citreum IH3 was characterized. This 1.8-kb sized plasmid contains single open reading frame that encodes a RepC class protein (342 amino acids) and a conserved pT181-type double strand origin, suggesting a rolling circle replication mode. This putative replicase protein shows the highest similarity to a replicase from pFR18 plasmid of Leuconostoc mesenteroides FR52 (64% identity), one of the pT181-type rolling circle plasmid family and contains a strictly conserved RepC-type active site sequence of pT181 family. A shuttle vector that was developed on the basis of this cryptic plasmid by insertion of both erythromycin resistance gene (ermC) from pE194 and Escherichia coli ColE1 origin was able to transform Leuconostoc strains, Lactobacillus plantarum, and Lactococcus lactis. Therefore, pIH01 derivative plasmids might be useful for the manipulation of Leuconostoc strains.  相似文献   

14.
A strain of Staphylococcus epidermidis was transduced to erythromycin resistance, and all of the transductants exhibited the macrolide, lincosamide, streptogramin B resistance phenotype. Curing and antibiotic disk studies also indicated that these resistances were controlled by a single plasmid determinant and were constitutive. Agarose gel electrophoresis of plasmid deoxyribonucleic acid (DNA) from donor, cured, and transduced strains showed that a single plasmid was responsible. This plasmid, designated pNE131, was examined for sequence homology to two other plasmids, pE194 and p1258, from Staphylococcus aureus, which also code for erythromycin resistance. DNA from plasmids pNE131 and pE194 hybridized with one another, but no extensive homology to pI258 with either pNE131 or pE194 was found. Restriction endonuclease digests of pNE131 and pE194 showed no common fragments. However, sequence homology was localized to the nucleotides in pE194 that code for the 29,000-dalton protein responsible for erythromycin resistance. pNE131 was calculated to have 2,220 base pairs and is the smallest naturally occurring plasmid with a known function yet reported in S. epidermidis.  相似文献   

15.
Specificity of RepC protein in plasmid pT181 DNA replication   总被引:6,自引:0,他引:6  
The plasmid pT181 of Staphylococcus aureus consists of 4437 base pairs and encodes resistance to tetracycline. Initiation of pT181 DNA replication specifically requires the plasmid-encoded initiator protein, RepC. The initiator protein binds specifically to a 32-base pair sequence within the pT181 origin of replication. RepC protein also has a nicking-closing activity that is specific for the pT181 origin. Replication of pT181 initiates by covalent extension of the nick and proceeds by a rolling circle mechanism. Two other small, multicopy plasmids pC221 and pS194 belong to the pT181 family and have common structural organization and replication properties. The replication proteins and replication origins of these plasmids have extensive sequence homologies, although they belong to different incompatibility groups. In spite of this homology, the replication proteins and replication origins of these three plasmids do not show any cross-reactivity in vivo. We have carried out a series of in vitro experiments to determine the specificity of pT181-encoded initiator protein, RepC. DNA binding experiments showed that although the binding of RepC to the pT181 origin was very efficient, little or no binding was seen with pC221 and pS194 origins. The nicking-closing activity of RepC was found to be equally efficient with the pC221 and pS194 plasmids. The plasmids pC221 and pS194 replicated efficiently in a RepC-dependent in vitro system. However, replication of these plasmids was greatly reduced in the presence of a competing pT181 origin. The results presented here suggest that nicking-closing by RepC at the origin is not sufficient for maximal replication and that tight binding of RepC to the origin plays an important role in the initiation of DNA replication.  相似文献   

16.
17.
Staphylococcus aureus plasmid pE194 manifests a natural thermosensitivity for replication and can be established in several species, both gram positive and gram negative, thus making it attractive for use as a delivery vector. Like most characterized plasmids of gram-positive bacteria, pE194 generates single-stranded DNA. The direction of pE194 replication is clockwise, as determined by the strandedness of free single-stranded DNA. Significant homology exists between a 50-base-pair sequence in the origin of pE194 and sequences present in plasmids pMV158 (Streptococcus agalactiae), pADB201 (Mycoplasma mycoides), and pSH71 (Lactococcus lactis). We used an initiation-termination reaction, in which pE194 initiates replication at its own origin and is induced to terminate at the related pMV158 sequence, to demonstrate that pE194 replicates by a rolling-circle mechanism; the initiation nick site was localized to an 8-base-pair sequence.  相似文献   

18.
Plasmids pMV158 and pTB913, originating from Streptococcus agalactiae and a thermophilic Bacillus respectively, were sequenced to completion. Both contained a BA3-type minus origin of replication and an RSA-site, believed to constitute a site-specific recombination site. These two regions were more than 99% homologous to the corresponding regions of the Staphylococcus aureus plasmid pUB110. Deleting the BA3-type minus origin resulted in the accumulation of a considerable amount of single-stranded DNA, both in L. lactis subsp. lactis and B. subtilis, indicating that this minus origin was functional in both bacterial species. Like pUB110, both plasmids contained an open reading frame encoding a putative plasmid recombination enzyme (Pre protein), which was located downstream of the RSA-site. On the basis of sequence comparisons between pUB110, pMV158, pTB913, pT181, pE194, pNE131 and pT48 two distinct families of RSA-sites and Pre proteins could be distinguished.  相似文献   

19.
pT181 is a fully sequenced 4.4-kb 20 copy Tcr plasmid from Staphylococcus aureus. Its replication system involves a unique unidirectional origin embedded in the coding sequence for a plasmid-determined protein, RepC, that is required for initiation. When joined to a 55 copy carrier plasmid, pE194, pT181 excludes autonomous isologous replicons by inhibiting their replication. Two types of spontaneous pT181 copy mutants have been isolated, one that eliminates sensitivity to this inhibition and another that does not. A spontaneous 180-bp deletion, delta 144, eliminates both the inhibitory activity and sensitivity to it. This deletion increases copy number by 50-fold and RepC production by at least 10-fold. It is located directly upstream from the repC coding sequence and the deletion-bearing plasmid supports the replication of inhibitor-sensitive plasmids in cells containing active inhibitor. This effect is probably due to the overproduction of RepC by the delta 144 plasmid. On the basis of these results, it is suggested that RepC synthesis is negatively controlled by an inhibitor that is encoded directly upstream from the repC coding sequence and acts as a tareget set in the same region. It is likely, therefore, that pT181 replication rate is determined by the level of RepC.  相似文献   

20.
A G Shivakumar  J Hahn  D Dubnau 《Plasmid》1979,2(2):279-289
The minicell system of Bacillus subtilis has been used to study the expression of plasmid genes using several R plasmids derived from Staphylococcus aureus. pE194, pC194, and pUB110 as well as several mutant and in vitro recombinant derivatives of these plasmids segregate into minicells. A copy control mutant of pE194 was used to show that the extent of segregation is proportional to the copy number. The polypeptides specified by these plasmids were examined by SDS-polyacrylamide gel electrophoresis. Six proteins specified by pE194, an erythromycin resistance plasmid, were identified using cop mutants. These comprise about 90% of the potential coding capacity of the 2.4-Mdal pE194 plasmid. One of these proteins (29,000 daltons) is inducible by erythromycin in the wild type pE194 but is synthesized constitutively in a mutant derivative which also expresses antibiotic resistance constitutively. Several other proteins are detected only in copy control mutants. pUB110, a kanamycin resistance plasmid, expresses three major proteins which comprise 50% of the coding capacity of this 3.0-Mdal plasmid. Two additional minor proteins are occasionally observed. pC194 (2.0 Mdal), which confers chloramphenicol resistance, expresses two polypeptides comprising about 25% of its coding capacity. One of these polypeptides (22,000 daltons) is inducible by chloramphenicol. pBD9, an in vitro composite of pUB110 and pE194, probably expresses all of the major parental plasmid proteins with the exception of one from pUB110 and one from pE194.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号