首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
2.
3.
Loss of expression of human leukocyte antigen (HLA) class II molecules on tumor cells affects the onset and modulation of the immune response through lack of activation of CD4+ T lymphocytes. Previously, we showed that the frequent loss of expression of HLA class II in diffuse large B-cell lymphoma (DLBCL) of the testis and the central nervous system (CNS) is mainly due to homozygous deletions in the HLA region on chromosome band 6p21.3. A minority of cases showed hemizygous deletions or mitotic recombination, implying that mutation of the remaining copy of the class II genes might be involved. Here, we studied three DLBCLs with loss of HLA-DQ expression for mutations in the DQB1 and DQA1 genes and three tumors with loss of HLA-DR expression for mutations in the DRB1 and DRA genes. In one case, a point mutation in exon 2 of the DQB1 gene, leading to the formation of a stop codon, was detected at position 47. In a second case, a stop codon was found at position 11 due to a deletion of 19 bp in exon 1 of the DRA gene. No mutations were found in the promoter sequences of the DRA, DQA1 and DQB1 genes. We conclude that both homozygous deletions and hemizygous deletions or mitotic recombination with mutations of the remaining allele may lead to loss of expression of the HLA class II genes, which is comparable to the mechanisms affecting HLA class I expression in solid cancers.  相似文献   

4.
5.
6.
The HLA-D region of the human major histocompatibility complex encodes the genes for the alpha and beta chains of the DP, DQ and DR class II antigens. A cDNA clone encoding a new class II beta chain (designated DO) was isolated from a library constructed from mRNA of a mutant B-cell line having a single HLA haplotype. Complete cDNA clones encoding the four isotypic beta chains of the DR1, DQw1, DPw2 and putative DO antigens were sequenced. The DO beta gene was mapped in the D region by hybridization with DNA of HLA-deletion mutants. DO beta mRNA expression is low in B-cell lines but remains in mutant lines which have lost expression of other class II genes. Unlike other class II genes DO beta is not induced by gamma-interferon in fibroblast lines. The DO beta gene is distinct from the DP beta, DQ beta and DR beta genes in its pattern of nucleotide divergence. The independent evolution and expression of DO beta suggest that it may be part of a functionally distinct class II molecule.  相似文献   

7.
A defect in a trans-regulatory factor which controls major histocompatibility complex class II gene expression is responsible for an inherited form of immunodeficiency with a lack of expression of human leukocyte antigen (HLA) class II antigens. We have recently described and cloned an HLA class II promoter DNA-binding protein, RF-X, present in normal B cells and absent in these class II-deficient regulatory mutants. Here we report that these in vitro results correlate with a specific change in the chromatin structure of the class II promoter: two prominent DNase I-hypersensitive sites were identified in the promoter of the HLA-DRA gene in normal B lymphocytes and found to be absent in the class II-deficient mutant cells. The same two prominent DNase I-hypersensitive sites were observed in normal fibroblastic cells induced by gamma interferon to express class II genes. Interestingly, they were also observed in the uninduced class II-negative fibroblastic cells, which have also been shown to have a normal RF-X binding pattern. We conclude that the two DNase I-hypersensitive sites in the HLA-DRA promoter reflect features in chromatin structure which correlate with the binding of the trans-acting factor RF-X and which are necessary but not sufficient for the expression of class II genes.  相似文献   

8.
Human T lymphocytes express human leukocyte antigen (HLA)-DR-alpha (DRA) upon mitogenic or antigenic stimulation. DR+ T cells are also found in a number of inflammatory and autoimmune diseases and have a proposed role in these diseases. The molecular mechanism of DR regulation in untransformed blood T lymphocytes was studied here by transient transfection of DRA-chloramphenicol acetyltransferase reporter gene constructs. Several novel features of this regulation were observed. During the early stages of T-cell activation by mitogens or antigens, strong promoter induction was exhibited with the proximal 43 bp of the DRA promoter which contains a TATTA motif. Addition of upstream X and Y DNA elements augmented the response. This contrasts with data from transformed cell lines in which the proximal 43 bp produced no detectable promoter function, and the inclusion of X and Y elements is essential for basal level expression. Mutation of the TATTA motif or substitution with a functional but different TATA element produced errant initiation and greatly reduced gene expression. Interestingly, T lymphocytes from a normal donor were DR+ prior to in vitro stimulation, and again, strong promoter activity was observed with 43 bp of proximal sequence. Unexpectedly, the presence of the X and Y elements correlated with a suppression of class II promoter function and surface antigen expression. This study of nontransformed lymphocytes reveals several novel features of DRA gene regulation and underscores the value and necessity of such studies.  相似文献   

9.
10.
11.
To identify nuclear functions required for cytochrome c oxidase biogenesis in yeast, recessive nuclear mutants that are deficient in cytochrome c oxidase were characterized. In complementation studies, 55 independently isolated mutants were placed into 34 complementation groups. Analysis of the content of cytochrome c oxidase subunits in each mutant permitted the definition of three phenotypic classes. One class contains three complementation groups whose strains carry mutations in the COX4, COX5a, or COX9 genes. These genes encode subunits IV, Va, and VIIa of cytochrome c oxidase, respectively. Mutations in each of these structural genes appear to affect the levels of the other eight subunits, albeit in different ways. A second class contains nuclear mutants that are defective in synthesis of a specific mitochondrial-encoded cytochrome c oxidase subunit (I, II, or III) or in both cytochrome c oxidase subunit I and apocytochrome b. These mutants fall into 17 complementation groups. The third class is represented by mutants in 14 complementation groups. These strains contain near normal amounts of all cytochrome c oxidase subunits examined and therefore are likely to be defective at some step in holoenzyme assembly. The large number of complementation groups represented by the second and third phenotypic classes suggest that both the expression of the structural genes encoding the nine polypeptide subunits of cytochrome c oxidase and the assembly of these subunits into a functional holoenzyme require the products of many nuclear genes.  相似文献   

12.
Molecular evidence has been obtained for a novel monomorphic HLA class II molecule distinct from HLA-DP/DQ/DR using a panel of lymphoblastoid cells which include HLA-loss mutants. The expression of this molecule was investigated using monomorphic affinity-purified mouse monoclonal antibodies (mAbs), including one of the IgG2a subclass designated EDUA. This antibody reacts strongly in a cell-binding radioimmunoassay with HLA-DR and -DQ loss mutants derived from a lymphoblastoid parental cell. The EDU-1 mAb also reacted with a local panel of homozygous Epstein-Barr virus-transformed cell lines. The reactive molecules were further detected on allostimulated T-cell clones and various leukemic cells including those of myeloid origin which lack surface expression of HLA-DQ molecules. Thus the class II molecule described in this study corresponds to a monomorphic HLA class II determinant expressed on a variety of cells of different origin and HLA phenotypes. Moreover, this antigen structure is distinct from that of HLA-DP/DQ/DR as shown by direct immunoprecipitation, serial immunodepletion experiments, and two-dimensional gel electrophoresis. The molecule could be specified by new class II genes between DP and DQ. An alternative explanation for the genetic basis of the novel molecule is the existence of isotypic associations between alpha and beta chains of various class II molecules (DP, DX, DZ, and DO) but not DR and DQ as the mutant cells tested lack the latter genes.  相似文献   

13.
14.
Major histocompatibility complex (MHC) class II proteins (HLA-DR, HLA-DP and HLA-DQ) play a fundamental role in the regulation of the immune response. The level of expression of human leukocyte antigen (HLA) class II antigens is regulated by interferon-gamma (IFN-gamma) and depends on the status of class II trans-activator protein (CIITA), a co-activator of the MHC class II gene promoter. In this study, we measured levels of constitutive and IFN-gamma-induced expression of MHC class II molecules, analysed the expression of CIITA and investigated the association between MHC class II transactivator polymorphism and expression of different MHC class II molecules in a large panel of melanoma cell lines obtained from the European Searchable Tumour Cell Line Database. Many cell lines showed no constitutive expression of HLA-DP, HLA-DQ and HLA-DR and no IFN-gamma-induced increase in HLA class II surface expression. However, in some cases, IFN-gamma treatment led to enhanced surface expression of HLA-DP and HLA-DR. HLA-DQ was less frequently expressed under basal conditions and was less frequently induced by IFN-gamma. In these melanoma cell lines, constitutive surface expression of HLA-DR and HLA-DP was higher than that of HLA-DQ. In addition, high constitutive level of cell surface expression of HLA-DR was correlated with lower inducibility of this expression by IFN-gamma. Finally, substitution A-->G in the 5' flanking region of CIITA promoter type III was associated with higher expression of constitutive HLA-DR (p<0.005). This study yielded a panel of melanoma cell lines with different patterns of constitutive and IFN-gamma-induced expression of HLA class II that can be used in future studies of the mechanisms of regulation of HLA class II expression.  相似文献   

15.
16.
17.
Numerous rodent cell lines exist that have defects in nucleotide excision repair of DNA caused by alterations in genes that fall into 10 different complementation groups. The precise roles in the repair of these genes are unknown. We report here that extracts from Chinese hamster ovary cells of excision repair-defective complementation groups 1 and 3 are defective in DNA excision repair in a cell-free system. In vitro complementation can be achieved by mixing extracts from the two groups with one another. In addition, extracts from a human cell line representing xeroderma pigmentosum complementation group B could complement rodent complementation group 1 extracts, but not group 3 extracts. This is consistent with an identity of the ERCC-3 and xeroderma pigmentosum group B genes. Cellular evidence points toward a defect in the incision of damaged DNA in group 1 and 3 mutants. Since the ERCC-1 and ERCC-3 proteins are required for the in vitro reaction, it appears that both gene products are directly involved in the enzymatic incision of damaged DNA, or in preincision reactions. The experiments reported here provide the biochemical basis of an approach to analyze the function of these nucleotide excision repair proteins.  相似文献   

18.
Heterokaryons were prepared and analyzed shortly after cell fusion using two mutant class-II-negative human B cell lines (RJ 2.2.5 and 6.1.6) and a cell line (TF) from a patient with a class-II-negative Bare Lymphocyte Syndrome. The resulting transient heterokaryons were analyzed by using an anti-HLA-DR monoclonal antibody to assess the cell surface expression of HLA-DR (the major subtype of class II antigens) by immunofluorescence microscopy and by using uniformly 32P-labeled SP6 RNA probes in Northern blots and RNase protection assays to assess mRNA synthesis. We find that class II gene expression in a B cell line from a Bare Lymphocyte Syndrome patient (TF) is rescued by a B cell line which expresses class II antigens indicating that this disease, at least in part, is caused by a defect(s) in a genetic locus encoding a factor(s) necessary for class II gene expression. Secondly, reciprocal genetic complementation was demonstrated in the heterokaryons 6.1.6 x RJ 2.2.5 and TF x RJ 2.2.5 (but not in TF x 6.1.6) by detection of cell surface DR by immunofluorescence microscopy and by a novel class II mRNA typing technique which allows characterization of distinct class II alleles. Thus, the two mutants generated in vitro have defects at two different genetic loci encoding specific regulatory factors necessary for human class II gene expression. One of these mutant cell lines, but not the other, complements the defect in the patient cell line, TF.  相似文献   

19.
20.
We previously described RAG, a mouse adenocarcinoma cell line, as deficient for the induction of major histocompatibility (MHC) class II antigens by IFN-, but responding normally for MHC class I antigen stimulation and anti-viral protection. We had established that the fusion of RAG with various human cell lines restored the induction of MHC class II antigens, whenever the human chromosome 16 was present in somatic cell hybrids. Here we show that the RAG cell line does not exhibit any induction by IFN- ofDMA, DMB, and theinvariant chain (Ii) mRNAs, and that the induction is restored in somatic cell hybrids containing human chromosome 16. In order to define the gene (designatedF16) affected in the RAG cells, we performed a complementation analysis by fusing RAG with previously described human cell lines defective for MHC class II antigen expression (e.g., BLS cell lines), and which belong to five different complementation groups. Our data show that the resulting somatic cell hybrids present an inducible expression of mouse MHC class II antigens, Ii, DMA, and DMB. Therefore, the RAG cell line represents a yet undescribed cellular mutant affected in the expression of MHC class II antigens. In addition, we demonstrate that MHC class II antigens can be constitutively expressed in the RAG cell line when transfected with the cDNA encoding humanCIITA driven by the RSV LTR promoter. Since the complementation analysis assessed that F16 and CIITA are distinct, our data suggest that F16 is required for the expression of CIITA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号