首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Procollagen is more stable in cellulo than in vitro   总被引:1,自引:0,他引:1  
The thermal denaturation of both intracellular and freshly secreted chick embryo tendon type I procollagen was investigated using susceptibility to proteolysis by trypsin and chymotrypsin as a probe for triple-helical conformation. Freshly secreted procollagen from the medium of matrix-free tendon cells in suspension or procollagen within the cells and in the pericellular environment melted at 45 degrees C. In contrast, if freshly secreted procollagen was subjected to the melting procedure after dialysis of the medium against 0.4 M NaCl, 0.1 M Tris HCl, pH 7.4 the protein melted at 42 degrees C, the melting temperature of purified procollagen dissolved in the same buffer. In each of these cases, the thermal denaturation profile was narrow, with a width of 1.0-1.5 degrees C. These results demonstrate that, in situ, procollagen is more stable toward thermal denaturation than was previously thought. This extra margin of thermal stability partially resolves the dilemma of how tissues are able to assemble triple-helical procollagen molecules at body temperatures that closely approach the melting temperature of the purified protein.  相似文献   

2.
The assembly of reduced pro-alpha chains of type I and type II procollagen into the native triple-helical molecule was examined in vitro in the presence and absence of pure protein disulfide isomerase. The data clearly indicates that protein disulfide isomerase is able to accelerate the formation of native interchain disulfide bonds in these procollagens. It takes about 6 min after disulfide bonding before triple-helical molecules exist, while the time required to produce triple-helical type I procollagen in the presence of protein disulfide isomerase is 9.4 min and that for type II procollagen 17.2 min. These values agree with those obtained for type I and II procollagen in vivo suggesting that protein disulfide isomerase is also an enzyme catalyzing interchain disulfide bond formation in procollagen in vivo. The formation of native disulfide bonds can proceed without any enzyme catalysis but then requires the presence of reduced and oxidized glutathione. Bonding is rather slow in such a case, however, resulting in a delay in the formation of the triple helix.  相似文献   

3.
Cycloamylose as an efficient artificial chaperone for protein refolding   总被引:7,自引:0,他引:7  
High molecular weight cyclic alpha-1,4-glucan (referred to as cycloamylose) exhibited an artificial chaperone property toward three enzymes in different categories. The inclusion properties of cycloamylose effectively accommodated detergents, which keep the chemically denatured enzymes from aggregation, and promoted proper protein folding. Chemically denatured citrate synthase was refolded and completely recovered it's enzymatic activity after dilution with polyoxyethylenesorbitan buffer followed by cycloamylose treatment. The refolding was completed within 2 h, and the activity of the refolded citrate synthase was quite stable. Cycloamylose also promoted the refolding of denatured carbonic anhydrase B and denatured lysozyme of a reduced form.  相似文献   

4.
Matrix-free cells from chick-embryo sterna were incubated with various concentrations of 2,2'-bipyridyl, an iron chelator that inhibits prolyl hydroxylase and lysyl hydroxylase. At concentrations in the region of 0.1 mM, significant effects on cartilage collagen hydroxylation and secretion were observed. When the underhydroxylated collagens were subsequently digested with chymotrypsin or chymotrypsin plus trypsin at 4 degrees C for 15 min, the minor cartilage collagen precursors (namely types IX and XI) were extensively degraded; type II procollagen was only partially susceptible and was converted into underhydroxylated collagen. The results demonstrate that there were significant differences in triple-helix stability among cartilage collagens such that the underhydroxylated minor collagen precursors were unable to attain a native structure under conditions where type II procollagen was successful.  相似文献   

5.
Shape and assembly of type IV procollagen obtained from cell culture.   总被引:13,自引:3,他引:10       下载免费PDF全文
Type IV procollagen was isolated from the culture medium of the teratocarcinoma cell line PYS-2 by affinity chromatography on heparin-Sepharose. Immunological studies showed that type IV procollagen is composed of pro-alpha 1(IV) and pro-alpha 2(IV) chains and contains two potential cross-linking sites which are located in the short triple-helical 7S domain and the globular domain NC1 . The 7S domain was also identified as the heparin binding site. Rotary shadowing visualized type IV procollagen as a single triple-helical rod (length 388 nm) with a globule at one end. Some of the procollagen in the medium, however, had formed aggregates by alignment of 2-4 molecules along their 7S domains. After deposition in the cell matrix, non-reducible cross-links between the 7S domains are formed while the globules of two procollagen molecules connect to each other. The latter may require a slight proteolytic processing of the globular domains NC1 . The shape of type IV procollagen and the initial steps in its assembly are compatible with a recently proposed network of type IV collagen molecules in basement membranes. Since both type IV collagen and laminin bind to heparin, the formation of higher ordered structures by interaction of both proteins with heparan-sulfate proteoglycan may occur in situ.  相似文献   

6.
Reversible conversion between the native and scrambled proteins can be applied to analyze the denaturation curve of a disulfide-containing protein. In the case of RNase A, scrambled species could not be well separated from the native species by HPLC to permit precise quantitative analysis of the extent of denaturation. Methods are developed here to overcome this problem. The methods exploit the difference of conformational stability between the native and scrambled RNase A. When a sample of partially denatured RNase A was placed under mild reducing conditions (0.2-1 mM dithiothreitol for 10 min), the disulfide bonds of the native RNase A remain intact, whereas those of scrambled isomers become fully reduced. The native and fully reduced species of RNase A can be completely separated by HPLC. Alternatively, a mixture of partially denatured RNase A can be treated with mild concentration of proteolytic enzymes (trypsin or thermolysin). In this approach, scrambled isomers of RNase A were totally fragmented and readily separated from the native RNase A. These methods allow analysis and construction of the denaturation curves of RNase A in the presence of urea, GdmCl and GdmSCN.  相似文献   

7.
A raw milk bacterial isolate, identified as Yersinia kristensenii was found to produce a bacteriocin which was inhibitory to Yersinia enterocolitica but not to other selected species of Yersinia or Gram-negative bacteria. Maximum production of bacteriocin was obtained when the organism was grown in shake culture at 28°C. Mitomycin C at a concentration of 0.5 μg ml-1 induced bacteriocin production. The bacteriocin was partially purified and characterized by ammonium sulphate fractionation and gel filtration. The bacteriocin was completely inactivated when treated with proteolytic enzymes (trypsin and chymotrypsin). Bacteriocin activity was heat-resistant and it retained some of its activity after 5 min at boiling temperature. A total of 15 bacteriocin sensitive-suspected food isolates were further identified biochemically as Yersinia enterocolitica and a non-sensitive isolate was identified as Yersinia intermedia.  相似文献   

8.
Immunocytochemical localization of tyrosine hydroxylase (TH) was performed on paraffin sections pretreated with various proteolytic enzymes. It was found that pretreatment with trypsin (1.2 mg/ml) for 5 min resulted in a dramatic increase in the number of TH-positive terminals throughout the brain, especially in the cerebellum, which contains fine preterminal and terminal axons that are difficult to stain. This pretreatment also led to a significant reduction in background staining and allowed for the use of the TH antiserum at high working dilutions. Several other proteolytic enzymes were tested and only chymotrypsin was nearly as effective as trypsin with respect to TH staining.  相似文献   

9.
Folding of carboxyl domain and assembly of procollagen I   总被引:3,自引:0,他引:3  
An early form of procollagen I was found in acetic acid extracts of radioactively labeled chick embryo skull bones. It resembled native procollagen I, but sedimented slightly faster, and its component chains were slightly underhydroxylated and were not disulfide-linked to each other, although its propeptides were internally disulfide-bonded. Pulse-chase experiments showed its conversion to disulfide-linked procollagen. As the same conversion occurred when proline hydroxylation was blocked by 2,2'-dipyridyl, we infer that the formation of this precursor from its component chains does not require collagen triple helix formation. We suggest that interaction between the folded carboxyl propeptides of individual pro-alpha (I) chains is an important step in the formation of this precursor and of procollagen I. Studies of the refolding and association of fully reduced and denatured carboxyl propeptides supported this concept. In the presence of glutathione the correct disulfide bonds could be reestablished, as judged by a mapping of some tryptic peptides. Individual carboxyl propeptides refolded first, and this occurred even in 2 M urea. Recognition between folded carboxyl propeptides occurred only when less than 0.5 M urea was present. The presence of the carboxyl telopeptides was important for trimeric reassembly. Individual propeptides also folded spontaneously during cell-free translation of pro-alpha (I) chains and were recognized by specific antibodies. We consider the role of carboxyl propeptides in the formation of procollagen I molecules and suggest a model of self-assembly, possibly facilitated by interactions with the luminal surface of the rough endoplasmic reticulum.  相似文献   

10.
During the biosynthesis and assembly of collagen structures, disulfide links can serve several functions. During biosynthesis they successively stabilize intra-peptide folding and associations of three chains into one molecule. Studies on the refolding and reassociation of reduced and denatured carboxyl propeptides of procollagen I showed that successive interactions of folding and assembly are successively weaker. Disulfide bridges were reestablished within correctly refolded carboxyl propeptides. Rearrangements of disulfide bridges may occur during the processing of type V procollagen molecules as these collagens become incorporated into extracellular matrix. The basement membrane procollagen IV molecules become disulfide linked at each end into networks, and there are indications that further rearrangements of disulfide links may allow additional modulation.  相似文献   

11.
1. Acid-inactivated yeast invertase could not be regenerated in the presence of the proteolytic enzymes trypsin, pepsin, and chymotrypsin. 2. Certain foreign proteins of non-enzymatic nature partially inhibited the reactivation of acid-inactivated invertase. 3. Certain proteins as gelatin, lacto-globulin, and carbohydrate-free horse crystalbumin did not prevent the reactivation of invertase at all. 4. Highly purified reactivated invertase was shown to exhibit an effect typical of original native invertase; that is, acceleration of its activity in presence of foreign protein at pH 3.0. 5. Native invertase was not digested by trypsin and chymotrypsin. 6. The addition of trypsin and chymotrypsin to reactivating invertase did not affect the invertase which had already reverted to the active form, but prevented further reactivation of inactive invertase.  相似文献   

12.
Recombinant expression systems for the production of collagen   总被引:7,自引:0,他引:7  
The ability of triple-helical collagen molecules to assemble into supramolecular structures forms the basis of commercial uses of collagen in the food industry and in medical applications such as cosmetic surgery and tissue repair. We have used cDNA techniques to engineer novel collagens with potentially enhanced biological properties; however, expression of fully functional novel molecules is difficult due to the complex nature of procollagen biosynthesis. This article outlines the application of various expression systems to procollagen production and details the use of the mammary gland as a suitable bioreactor for the synthesis of significant amounts of novel procollagens from cDNA constructs.  相似文献   

13.
In culture filtrates from the crayfish plague parasite, Aphanomyces astaci, protease and a low level of hyaluronidase activity were found. The hyaluronidase activity was highest at pH 6.5 or above and at about 23°C. The protease activity had a broad pH-optimum, between pH 7 and at least pH 10, and was partially denatured at 30°C. However, when incubated for 30 min with the substrate, casein, the activity increased logarithmically up to about 35–40°C and had an apparent optimum at 45–50°C. The proteases from the parasitic as well as from two less proteolytic, saprophytic Aphanomyces species were predominantly constitutive and were excreted mainly by the older mycelia. Proteases from the parasite and a saprophyte did not reach full activity until 10–30 min after substrate addition. No lipase activity was found in the case of the mycelium of the parasitic species. However, esterase was apparently present inside germinating zoospores. The native enzymes of A. astaci could degrade freeze-dried soft cuticle from crayfish. The relevance of the different enzymes of A. astaci for the penetration process within the cuticle of crayfish is discussed.  相似文献   

14.
The in vitro digestibility of Ulva armoricana proteins by trypsin, chymotrypsin and human intestinal juice was determined to evaluate their nutritional value. The amino acid composition of the protein fraction and its changes during a sampling period from October to February were also studied. Some differences in the protein pattern shown by SDS PAGE were found in different months, such as the presence of a 54 kDa protein in February. The protein fraction is composed mainly of aspartic and glutamic acids (24–35% of protein fraction, according to season) and the essential amino acids constitute 27–36% of the total fraction. The efficiencies of trypsin and chymotrypsin in Ulva protein digestion are comparable. Only four proteins with apparent molecular weights of 86, 68, 40, and 29 KDa are digested by these proteolytic systems. The proteins from the October sample were more sensitive to chymotrypsin than those from the February sample. For instance, two proteins with apparent molecular weights of 100 and 67 kDa were weakly digested by chymotrypsin in the February extract, were fully digested in the October sample. The February sample differed from two others in the presence of glycosylated proteins, most of which have apparent molecular weights higher than 43 KDa. With the October sample, the activity of human intestinal juice was more effective than two other proteolytic systems. This is especially evident with a 27 kDa protein, which was only partially digested by the intestinal liquid and not digested by chymotrypsin or trypsin. However, human intestinal juice in the February apparently did not attack the 27 kDa protein. These data suggest a change in protein structure making it less sensitive to human intestinal juice. The glycosylation of protein extract, which was especially marked in February, could explain the differences in behaviour of U. armoricana proteins in response to the digestive action of human enzymes. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Bacteriorhodopsin (BR), from the purple membrane (PM) of Halobacterium halobium, was chemically modified with methoxypolyethylene glycol (m-PEG; molecular weight = 5,000 Da) succinimidyl carbonate. The polyethylene glycol-bacteriorhodopsin (m-PEG-SC-BR33) conjugate, containing one polyethylene glycol chain, was water soluble. The secondary structure of the conjugate in water appeared partially denatured, but was shown to contain alpha-helical segments by circular dichroism spectroscopy. The isolated bacteriorhodopsin conjugate, with added retinal, was refolded in a mixed detergent-lipid micelle and had an absorption maximum at 555 nm. The refolded conjugate was transferred into vesicles that pumped protons, upon illumination, as efficiently as did native BR. Modification of the PM with m-PEG did not alter the native structure or inhibit proton pumping, and therefore it is suggested that the glycol polymer is present as a moiety covalently linked to residues unnecessary for proton pumping and proper folding. The site of attachment of m-PEG was determined to be at either Lys 129 or Lys 159, with position Lys 129 the most probable site of attachment. The m-PEG-SC-BR33 could be stepwise refolded to the native conformation by the addition of trifluoroethanol to lower the dielectric constant, simulating the insertion of the BR into the phospholipid bilayer.  相似文献   

16.
Size-exclusion high performance liquid chromatography was used to compare the Stokes radius of the mixed disulfide of trypsinogen refolded for 10 min with the Stokes radius of denatured trypsinogen in high concentrations of urea. After folding for 10 min, rechromatography of a collection of sequential fractions of an initial separation showed that the fractions display microheterogeneity as seen in the value of the Stokes radius of each fraction. These intermediate species differed in their Stokes radius, and each had a globular structure cross-linked by disulfide bonds. In contrast, when trypsinogen with the native disulfides intact was equilibrated at different concentrations of urea (0-8 M), a progressive increase in Stokes radius was observed with extent of unfolding. Rechromatography of a series of fractions collected at a specific urea concentration showed that each had the same Stokes radius as the fraction in the initial separation. Urea-denatured trypsinogen and partially refolded trypsinogen must therefore differ in the disulfide pairing that links regions of the polypeptide chain. These observations support the suggestion that non-native disulfide bonds are responsible for the many stable conformations that form early in the folding of the mixed disulfide of trypsinogen (Light, A., and Higaki, J.N. (1987) Biochemistry 26, 5556-5564). These intermediates initially are loose structures (large Stokes radius) that become more compact with time (decreasing Stokes radius). The intermediates must therefore undergo a continuing disulfide interchange until native disulfides form late in the process when the stable conformation of the native molecule is reached.  相似文献   

17.
The authors in a previous report (Klausner, R. D., Kempf, C., Weinstein, J. N., Blumenthal, R., and van Renswoude, J. (1983) Biochem. J. 212, 801-810) have argued that native folding of ovalbumin occurs during translation, but not in a renaturation system of the denatured form. To re-examine the possibility, we searched for the conditions of correct oxidative refolding of denatured disulfide-reduced ovalbumin. Data of trypsin resistance, CD-spectrum, and selective reactivity of cysteine sulfhydryls revealed that the fully denatured protein can refold into the native conformation under disulfide-reduced conditions. The interconversion between the native and denatured forms was fully reversible with a free energy change for unfolding of 6.6 kcal/mol at 25 degrees C. Subsequent reoxidation under a variety of redox conditions generated only one disulfide bond in the reduced refolded protein with six cysteine sulfhydryls. Furthermore, the regenerated disulfide was found by peptide analyses to correspond to the native disulfide pairing, Cys73-Cys120. We, therefore, concluded that co-translational folding, if any, is not requisite for the correct oxidative folding of ovalbumin.  相似文献   

18.
Experiments were carried out to test the hypothesis that a 19-year-old proband with a mild variant of Ehlers-Danlos syndrome type IV had a mutation in the gene for type III procollagen. cDNA and genomic DNA were analyzed by using the polymerase chain reaction and cloning of the products into M13 filamentous phage. A mutation was found that converted the codon for glycine 883 of the triple-helical domain in one allele for type III procollagen to a codon for aspartate. The polymerase chain reaction introduced a few artifactual single base substitutions. Also, it was difficult to distinguish copies from the two alleles in many of the M13 clones. Therefore, several different strategies and analyses of about 50,000 nucleotide sequences in a series of clones were used to demonstrate that the mutation in the codon for glycine 883 was the only mutation in coding sequences for the triple-helical domain of type III procollagen that could have contributed to the phenotype. The same mutation in the codon for glycine 883 in one allele for type III procollagen was found in the proband's 52-year-old father who also had a mild variant of Ehlers-Danlos syndrome type IV. The type III procollagen synthesized by the proband's fibroblasts was analyzed by polyacrylamide gel electrophoresis. Less type III procollagen was secreted by the proband's fibroblasts than by control fibroblasts. Also, the thermal stability of the type III procollagen synthesized by the proband's fibroblasts was lower than the thermal stability of normal type III procollagen as assayed by brief protease digestion. The results, therefore, demonstrated that the single base mutation that converted the codon of glycine 883 to a codon for aspartate destabilized the entire triple helix of type III procollagen and probably accounted for the mild phenotype of Ehlers-Danlos syndrome type IV seen in the proband and her father.  相似文献   

19.
The transition between the native and denatured states of the tetrameric succinyl-CoA synthetase from Escherichia coli has been investigated by circular dichroism, fluorescence spectroscopy, cross-linking by glutaraldehyde and activity measurements. At pH 7.4 and 25 degrees C, both denaturation of succinyl-CoA synthetase by guanidine hydrochloride and refolding of the denatured enzyme have been characterized as reversible reactions. In the presence of its substrate ATP, the denatured enzyme could be successfully reconstituted into the active enzyme with a yield of 71-100%. Kinetically, reacquisition of secondary structure by the denatured enzyme was rapid and occurred within 1 min after refolding was initiated. On the other hand, its reactivation was a slow process which continued up to 25 min before 90% of the native activity could be restored. Both secondary and quaternary structures of the enzyme, reconstituted in the absence of ATP, were indistinguishable from those of the native enzyme but the renatured protein was catalytically inactive. This observation indicates the presence of catalytically inactive tetramer as an intermediate in the reconstitution process. The reconstituted protein could be reactivated by ATP even 10 min after the reacquisition of the native secondary structure by the refolding protein. However, reactivation of the protein by ATP 60 min after the regain of secondary structure was significantly less, suggesting that rapid refolding and reassociation of the monomers into a native-like tetramer and reactivation of the tetramer are sequential events; the latter involving slow and small conformational rearrangements in the refolded enzyme that are likely to be associated with phosphorylation.  相似文献   

20.
Polymorphonuclear leukocytes have been shown to contain proteolytic enzymes which are capable of degrading connective tissue proteins such as native collagen. In this study, proteolytic enzymes were extracted from human polymorphonuclear leukocytes and a neutral proteinase was extensively purified and characterized. The activity of this enzyme was monitored by degradation of denatured [ 3H ]proline-labeled type I collagen or by cleavage of a synthetic dinitrophenylated peptide with a Gly-Ile sequence. The enzyme was readily separated from leukocyte collagenase by concanavalin-A--Sepharose affinity chromatography and further purified by QAE-Sephadex ion-exchange chromatography and gel filtration on Sephacryl S-200. The purified enzyme had a molecular weight of approximately 105000, its pH optimum was about 7.8, and it was inhibited by Na2EDTA and dithiothreitol, but not by fetal calf serum. The enzyme degraded genetically distinct type I, II, III, IV and V collagens, when in a non-helical form, but not when in native triple-helical conformation. Dansyl-monitored end-group analyses, combined with digestion by carboxypeptidase A, indicated that the enzyme cleaved denaturated type I collagen at Gly-Xaa sequences, in which Xaa can be leucine, isoleucine, valine, phenylalanine, lysine, or methionine. Thus, the purified enzyme referred to here as Gly-Xaa proteinase, is a neutral proteinase, which may be of importance in inflammatory disease processes by degrading further collagen peptides which have been rendered non-helical as a result of collagenase cleavage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号