首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dye Lucifer yellow CH was iontophoresed into recently fertilized eggs and early blastomeres ofHydractinia echinata. Iontophoresis was carried out on the stage of an inverted microscope in order to follow filling of the injected cells by short pulses of epifluorescent illumination. Lucifer yellow proved to be nontoxic and development in embryos with injected blastomeres proceeded normally. When zygotes were injected all the cells of the forming embryo contained dye. When one of the first two blastomeres was injected all the progeny of the injected cell also contained dye. Dye-coupling between injected and uninjected blastomeres did not occur in two-cell embryos nor between descendants of either line. Development of Lucifer-yellow-filled blastomeres or zygotes could be stopped by blue light irradiation. In a number of injected cells, the dye tended to accumulate forming brightly shining spots. The dye did not penetrate the nuclear envelope of injected cells.  相似文献   

2.
The green fluorescent protein (GFP) and other intrinsically fluorescent proteins (IFPs) are popular reporters because they allow visualization of cellular constituents in living specimens. IFP technology makes it possible to view dynamic processes in living cells, but extended observation, using fluorescence microscopy (both wide-field and confocal), can result in significant light energy exposure. Therefore, it is possible that cells experience light-induced damage that alters cell physiology and confounds observations. To understand the impact that extended viewing has on cells, we obtained quantitative information about the effect of light energy dose and observation conditions on tobacco BY-2 cell physiology. Our results show a non-linear relationship between the excitation light intensity and mitotic arrest, and the frequency of mitotic arrest is dependent on the presence of an IFP that absorbs the excitation light. Moreover, fluorescence microscopy induces the production of reactive oxygen species (ROS), as assayed using BY-2 cells loaded with oxidation-sensitive dyes, and the level of ROS production increases if the cells express an IFP that absorbs the excitation light energy. The dye oxidation follows sigmoidal kinetics and is reversible if the cells are exposed to low irradiation levels. In addition, the dye oxidation rate shows a non-linear relationship to the excitation light intensity, and a good correlation exists between photobleaching, mitotic arrest, and dye oxidation. The data highlight the importance of ROS scavenging for normal mitotic progression, and provide a reference for judiciously choosing conditions that avoid photobleaching that can lead to ROS accumulation and physiological damage.  相似文献   

3.
The intercalating dye ethidium bromide (EB), inhibits excision of pyrimidine dimers from UV-irradiated excision-proficient Escherichia coli B/r hcr+ cells. Inhibition is total at a 2.5 - 10(-4) M concentration 120 min after irradiation with a dose of 750 erg/mm2. The viability of irradiated cells diminishes in proportion to the EB concentration. Under wholly analogous conditions of cultivation and irradiation no inhibitory effect of KCN and caffeine (CFF) and only a slight effect of chloramphenicol (CAP) on dimer excision has been observed. The viability of cells is affected by these compounds but it does not appear to depend on the quantity of excised photoproducts. A change in the secondary structure of DNA induced by intercalation of EB appears to be the reason for the depression of excision of UV photoproducts.  相似文献   

4.
Low power millimeter wave (LP-MW) irradiation has been successfully used in clinical practice as an independent and/or supplemental therapy in patients with various diseases. It is still not clear, however, whether exposed skin is directly affected by repeated LP-MW irradiation and whether cells of the epidermis can be activated by the absorbed energy. Keratinocytes, the most numerous component of the epidermis are believed to manifest functional responses to physical stimuli. In this study we analyzed whether LP-MW irradiation modulated the production of chemokines, including RANTES and IP-10 of keratinocytes in vitro. We also investigated whether LP-MW irradiation induces a heat stress reaction in keratinocytes, and stimulates heat shock protein 70 (Hsp70) production. Vital staining of keratinocytes with carboxyfluorescein succinimidyl ester and ethidium bromide was used to analyze the MW effect on the viability of adherent cells. In addition, we studied the effect of LP-MW irradiation on intercellular gap junctional communication in keratinocyte monolayers by Lucifer yellow dye transfer. We found no significant changes in constitutive RANTES and inducible IP-10 production following LP-MW irradiation. LP-MW exposure of keratinocyte monolayers did not alter Hsp70 production, unlike exposure to higher power MWs (HP-MW) or hyperthermia (43 degrees C; 1 h). LP-MW irradiation and hyperthermia did not alter the viability of adherent keratinocytes, while HP-MW irradiation induced cellular damage within the beam area. Finally, we found no alteration in the gap junctional intercellular communication of keratinocytes following LP-MW irradiation, which on the other hand, was significantly increased by hyperthermia. In summary, we detected no harmful effect of LP-MW irradiation on both keratinocyte function and structure in vitro, although these cells were sensitive to higher MW power that developed heat stress reaction and cellular damage. Our results provide further evidence that LP-MW irradiation does not induce evidence of skin inflammation or keratinocyte damage and that its clinical application appears to be safe.  相似文献   

5.
Effects of irradiation and heating on survival of Salmonella typhimurium ATCC 14028 were examined by measuring DNA damage and the integrity of the cytoplasmic membrane. S. typhimurium cells fell into two distinct groups following heating: (i) heat-sensitive cells, which were rapidly inactivated at 65 degrees C and (ii) heat-resistant cells, which were only slowly inactivated at 65 degrees C. Radiation sensitivity of S. typhimurium was greater in the presence of air than in the presence of N2 gas (radiation doses required to inactivate 90% of the cells, 0.394 +/- 0.029 in air and 0.561 +/- 0.035 in N2). Recovery of the covalently closed circular form of plasmid pBR322 from S. typhimurium transformants (Ampr Tetr) was decreased by irradiation but not by heating. Heating prior to irradiation significantly decreased the recovery of plasmid DNA without affecting survival of S. typhimurium. Transformability of the recovered plasmid pBR322 was affected by neither irradiation nor heating, and mutation of antibiotic resistance genes was not detected in S. typhimurium. Heating, but not irradiation, caused destabilization of the cytoplasmic membrane, allowing penetration of hydrophobic dye. These results suggest that lethality of heating followed by irradiation for S. typhimurium was additive, reflecting irradiation-induced DNA damage and heat-induced membrane destabilization. When irradiation preceded heating in the absence of air, more cells were inactivated than was expected, because of heat-inactivating radiation-damaged DNA.  相似文献   

6.
目的:利用532 nm脉冲激光、532 nm连续激光和氙灯对K562细胞进行基于5-氨基乙酰丙酸的光动力疗法(ALA-PDT),研究在不同光照条件下细胞抑制率的变化情况,为实现体外ALA-PDT的高效率选择合适的光源。方法:在其他条件相同的情况下,采用不同的光源、不同的光剂量对ALA-PDT组细胞进行辐照,利用O-LYMPUS倒置荧光显微镜和显微镜数码相机系统观察细胞的形态学变化并拍照,利用光学显微镜进行台盼兰拒染法检测细胞的抑制率变化情况。结果:532 nm连续激光和脉冲激光对K562细胞的ALA-PDT抑制率均较低,增加光剂量也不能有效提高ALA-PDT的抑制率;氙灯在功率密度为350 mW/cm2、光照5 min时就能达到最佳的光剂量,此时单纯光照对K562细胞的光损伤作用很小且ALA-PDT效率很高。结论:宽光谱、高功率的氙灯对K562细胞的ALA-PDT效果远优于532 nm激光,对体外ALA-PDT实验比较适用。  相似文献   

7.
The effect of heat exposure on the repair of radiation-induced DNA damage which inhibits the ability of nuclear DNA to undergo supercoiling changes was studied using the fluorescent halo assay in thermotolerant and nonthermotolerant (normal) cells. The assay utilizes an intercalating, fluorescent dye to unwind and rewind endogenous DNA supercoils. When HeLa cells are exposed to 17.3 Gy radiation the ability of DNA to be rewound into supercoils is completely inhibited. However, the ability of DNA to rewind is 70% restored by 30 min after irradiation. Both thermotolerant and normal cells exposed to 45 degrees C for 30 min prior to irradiation had a rewinding ability intermediate between control and unheated cells, but there was no restoration of rewinding ability up to 3 h postirradiation. Thus, when irradiation immediately followed heating, there was no difference between thermotolerant and normal cells. However, when various time intervals were imposed between heating and irradiation, a difference in the ability of the cells to recover from heat-induced alterations became apparent. In normal cells after 6 h of postheat incubation the cells' ability to restore DNA supercoiling was approximately the same as that of control cells, while in thermotolerant cells only 2 h was required to repair the ability to restore supercoiling at the same rate. The rate of repair of DNA remained correlated with relative nuclear protein content as measured by fluorescein isothiocyanate staining in both thermotolerant and normal cells, indicating a possible relationship between the two.  相似文献   

8.
On the basis of anatomy and larval behavior, the apical sensory organ (ASO) of gastropod veliger larvae has been implicated as the site of perception of cues for settlement and metamorphosis. Until now, there have been no experimental data to support this hypothesis. In this study, cells in the ASO of veliger larvae of the tropical nudibranch Phestilla sibogae were stained with the styryl vital dye DASPEI and then irradiated with a narrow excitatory light beam on a fluorescence microscope. When its ASO cells were bleached by irradiation for 20 min or longer, an otherwise healthy larva was no longer able to respond to the usual metamorphic cue, a soluble metabolite from a coral prey of the adult nudibranch. The irradiated cells absorbed the dye acridine orange, suggesting that they were dying. When larvae not stained with DASPEI were similarly irradiated, or when stained larvae were irradiated with the light beam focused on other parts of the body, there was no loss of ability to metamorphose. Together these data provide strong support for the hypothesis. Potassium and cesium ions, known to induce metamorphosis in larvae of many marine-invertebrate phyla, continue to induce metamorphosis in larvae that have lost the ability to respond to the coral inducer due to staining and irradiation. These results demonstrate that (1) the ASO-ablated larvae have not lost the ability to metamorphose and (2) the ions do not act only on the metamorphic-signal receptor cells, but at other sites downstream in the metamorphic signal transduction pathway.  相似文献   

9.
H Horiuchi  M Takagi    K Yano 《Journal of bacteriology》1984,160(3):1017-1021
The relaxation of plasmid DNA was observed after the visible light irradiation of Escherichia coli AB1157 harboring plasmid pBR322 or some other plasmids in the presence of a photosensitizing dye, such as toluidine blue or acridine orange, and molecular oxygen. Treatment of the cells with hydroperoxides, such as tert-butyl hydroperoxide, cumene hydroperoxide, and hydrogen peroxide, also caused the plasmid DNA relaxation in vivo. Relaxation was not observed in these treatments of purified pBR322 DNA in vitro. Plasmid DNA relaxation was also detected after near-UV irradiation. Far-UV irradiation did not induce such relaxation.  相似文献   

10.
Ultraviolet (UV) light is a strong apoptotic trigger that can induce a caspase-dependent biochemical change in cells. We previously showed that UV irradiation can elicit caspase-3 activation and the subsequent cleavage and activation of p21-activated kinase 2 (PAK2) in human epidermal carcinoma A431 cells. We report that genistein, an isoflavone compound with known inhibitory activities to protein tyrosine kinases (PTKs) and topoisomerase-II (topo-II), can prevent UV irradiation-induced apoptotic biochemical changes (DNA fragmentation, caspase-3 activation, and cleavage/activation of PAK2) in A431 cells. Surprisingly, two typical PTK inhibitors (tyrphostin A47 and herbimycin A) and three known topo-II inhibitors (etoposide, daunorubicin, and novomycin) had no effect on UV irradiation-induced apoptotic biochemical changes, suggesting that the inhibitory effect of genistein is not dependent on its property as a PTK/topo-II inhibitor. In contrast, azide, a reactive oxygen species (ROS) scavenger, could effectively block the UV irradiation-induced apoptotic cell responses. Flow cytometric analysis using the cell-permeable dye 2',7'-dichlorofluorescin diacetate as an indicator of the generation of ROS showed that UV irradiation caused increase of the intracellular oxidative stress and that this increase could be abolished by azide, suggesting that oxidative stress plays an important role in mediating the apoptotic effect of UV irradiation. Importantly, the UV irradiation-induced oxidative stress in cells could be significantly attenuated by genistein, suggesting that impairment of ROS formation during UV irradiation is responsible for the antiapoptotic effect of genistein. Collectively, our results demonstrate the involvement of oxidative stress in the UV irradiation-induced caspase activation and the subsequent apoptotic biochemical changes and show that genistein is a potent inhibitor for this process.  相似文献   

11.
Oxygen enhancement of tumor radiosensitivity is attributed to DNA damage by reactive oxygen species. The mechanism remains unclear but may involve mitochondria as major sources of oxygen and nitrogen radicals as well as central effectors of energy homeostasis and apoptosis. Here we used dihydrorhodamine and 2',7'-dichlorodihydrofluorescein to compare mitochondrial and total cell generation, respectively, of reactive oxygen or nitrogen species in cells irradiated at 5 Gy. Irradiation in the presence of oxygen selectively stimulated mitochondrial radical production in HeLa and MeWo cells, but in MCF7 cells radical production was more generalized. In all three cell lines oxygen impaired cell proliferation as measured by resazurin reduction 7 days after irradiation. Antioxidants N-acetylcysteine, ascorbic acid, and melatonin largely prevented dye oxidation during normoxic irradiation yet had no effect on oxygen-dependent irradiation injury. However, NO synthase inhibitor N(G)-monomethyl-L-arginine protected HeLa and MCF7 though not MeWo cells, consistent with their different levels of constitutive NO generation. SB203580 inhibition of p38 MAPK appreciably protected HeLa and marginally protected MCF7 cells against oxygen-dependent irradiation injury, while the less specific JNK/SAPK inhibitor SP600125 and ERK inhibitor U0126 had no effect. None of the inhibitors affected MeWo radiosensitivity. Therefore oxygen-enhanced radiosensitivity in these tumor cell lines does not depend on extensive production of oxygen radicals and is cell-type dependent. NO mediates oxygen-dependent injury in HeLa and MCF7 cells, by p38-dependent and MAPK-independent mechanisms, respectively. In MeWo cells this oxygen-enhanced radiosensitivity is independent of both NO and MAPK signaling.  相似文献   

12.
MOLT-4 cells undergo apoptosis after X irradiation. A radiosensitive variant, MOLT-4N1, and a radioresistant variant, MOLT-4N2, have been studied with respect to their radiosensitivity and its relationship to the levels of TP53 protein (formerly known as p53). X irradiation induces apoptosis in both cell lines with the following difference: The induction of apoptosis in MOLT-4N2 cells occurred later than in MOLT-4N1 cells as determined by the morphological changes and DNA fragmentation. The levels of cell death measured by the dye exclusion test coincided with the levels of apoptosis in both cell lines, suggesting that radiation-induced cell killing is determined by the induction of apoptosis. Unirradiated MOLT-4N1 cells contained a significantly higher intracellular level of TP53 protein and a much higher level of TP53 mRNA compared to MOLT-4N2 cells. X irradiation led to an accumulation of TP53 protein in both cell lines that was greater in MOLT-4N1 cells. This accumulation of TP53 protein preceded changes in DNA degradation and ladder formation and in nuclear morphology. These results strongly suggest that the radiosensitivity of MOLT-4 cells correlates well with the unirradiated control levels of TP53 mRNA and TP53 protein, and that the quantitative levels of TP53 protein must reach a threshold for the cells to undergo apoptosis.  相似文献   

13.
The effect of gamma-rays on the binding of proflavine and acridine orange to DNA was investigated by spectrophotometry. The effect of irradiation was observed on the buffered solutions of the free dye and free DNA. A dose of about 35 krad caused a hyperchromicity of 30-40 per cent to the DNA peak at 258 nm, while the same dose introduced a hypochromic effect to the monomer peaks of the dyes by 30 per cent. This implied that gamma-rays have an effect of decreasing the monomer concentration of free-day molecules in solution. From the results, we conclude that more dye is bound to the changed conformation of dye-bound DNA on irradiation. Scratchard-binding isotherms drawn for the unirradiated and irradiated complexes of Pf-DNA showed interesting differences. Similar isotherms could not be obtained for the acridine orange-DNA system.  相似文献   

14.
The photosensitizing efficiency of six dyes--proflavine, 9-aminoacridine, ethidium bromide, thiopyronine, pyronine and acridine red--have been compared on the basis of the inactivation of sensitized T4 phage caused by light irradiation. This reaction was only measurable after diffusion of the dye through the phage capsid and was not observed in the presence of either chloroquine or quinacrine; it followed a single-hit kinetics as a function of the irradiation time. With each dye, a double reciprocal plot of the inactivation constant versus the dye concentration present gave rise to a linear relationship. From this relation, parameters were deduced which expressed the relative photosensitizing efficiencies. Dye-binding to the phages was measured and the proflavine-mediated inactivation appeared to be related to the amount of strongly bound molecules. Such a conclusion could not be reached in the case of 9-aminoacridine and ethidium bromide, which were much less efficient photosensitizers than proflavine, but which were also strongly bound to the phages. Thiopyronine was weakly bound to the phages; it had, however, the highest photosensitizing activity observed. These results indicate that various mechanisms are involved when the phage photosensitization is due to one dye or another.  相似文献   

15.
在骨关节疾病中,基质金属蛋白酶(matrix metalloproteinase,MMP)对关节软骨缺损的机理扮演着重要的角色。为了进一步明确低强度激光在关节软骨缺损中的治疗作用,应用细胞因子IL-1β与TNF-α刺激培养SW 1353细胞复制炎症细胞模型,观察发光二极管(LED)照射对培养细胞的生存率和死亡率的影响、细胞活性的影响、以及对MMP-3和MMP-13的调节作用。实验结果显示,10μg/L IL-1β与20μg/L TNF-α对培养细胞生存率无明显影响,而细胞活性明显下降(P<0.01),培养液中MMP-3和MMP-13含量明显上升(P<0.01,P<0.05);LED照射后可见与相应的模型组比较细胞死亡率下降(P<0.01)、培养液中MMP-3和MMP-13含量显著性降低在(P<0.01,P<0.05)。研究表明,LED照射对炎症因子刺激的SW 1 353细胞的MMP过多表达具有抑制性作用,可能对于关节软骨缺损性疾病的LED照射治疗起一定的指导意义。  相似文献   

16.
Takagi S  Nagai R 《Plant physiology》1988,88(1):228-232
In Vallisneria gigantea Graebner mesophyll cells, red light irradiation induces cytoplasmic streaming by decreasing the Ca2+ concentration in the cytoplasm, while far-red light irradiation inhibits it by increasing the concentration (S Takagi, R Nagai 1985 Plant Cell Physiol 26: 941-951). To examine the effects of light irradiation on Ca2+ fluxes across the cell membrane, protoplasts are isolated from the mesophyll cells. Changes in Ca2+ concentration in a solution bathing the protoplasts are monitored by spectrophotometry, using the Ca2+ -sensitive dye murexide. Red light irradiation induces an increase in Ca2+ concentration, which means an efflux of Ca2+ from the protoplasts. Subsequent far-red light irradiation produces a rapid decrease in Ca2+ concentration down to the dark control level; however, this is not observed in the presence of the Ca2+ -channel blocker nifedipine. Vanadate inhibits both the streaming and the Ca2+ efflux induced by red light irradiation. The results suggest that red light and far-red light control Ca2+ movements across the cell membrane, which in turn regulate the streaming.  相似文献   

17.
In order to combine laser confocal microscopy with physiological measurements, a number of conditions have to be met: the dye must not be toxic to the cells the laser light itself must not damage the cells; and the excitation of the fluorochrome during imaging must not generate products with toxic effects. We have investigated these conditions the hearing organ of the guinea pig. Two dyes were used, namely, calcein-AM, which is metabolized in vital cells to a fluorescent product in the cytoplasm, and a lipophilic membrane dye. The effect of the dyes on cell function was tested in the intact hearing organ, maintained in the isolated temporal bone, by measuring the electrophysiological potentials generated by the sensory cells in response to tone pulses. The loading of the cells with the dyes had no adverse effects. The effect of the laser beam was explored on isolated coils from the cochlea. In two preparations, the specimens viewed in the confocal system were fixed and processed for electron microscopy. Identified cells were followed before, during, and after laser exposure and could ultimately be examined at the ultrastructural level. Exposure to the laser beam did not cause damage in unstained cells, even at high intensities. In stained tissue, confocal microscopy could safely be performed at normal beam intensity without causing ultrastructural changes. At high intensities, about 100 times normal for 60 times as long, irradiation damage was seen that was selective in that the cells stained with the different dyes exhibited damage at the different sites corresponding to the subcellular location of the dyes. Cells stained with calcein showed lysis of mitochondria and loss of cytoplasmic matrix, whereas cells stained with the styryl membrane dye showed swelling of subsurface cisternae, contortion of the cell wall, and shrinkage. The styryl dyes, in particular, which selectively stain the sensory and neuronal cells in the organ of Corti, could be exploited for phototoxic use.  相似文献   

18.
Mitochondria of early Drosophila embryos were observed with a transmission electron microscope and a fluorescent microscope after vital staining with rhodamine 123, which accumulates only in active mitochondria. Rhodamine 123 accumulated particularly in the posterior pole region in early cleavage embryos, whereas the spatial distribution of mitochondria in an embryo was uniform throughout cleavage stages. In late cleavage stages, the dye showed very weak and uniform accumulation in all regions of periplasm. Polar plasm, sequestered in pole cells, restored the ability to accumulate the dye. Therefore, it is concluded that the respiratory activity of mitochondria is higher in the polar plasm than in the other regions of periplasm in early embryos, and this changes during development. The temporal changes in rhodamine 123-staining of polar plasm were not affected by u.v. irradiation at the posterior of early cleavage embryos at a sufficient dosage to prevent pole cell formation. This suggests that the inhibition of pole cell formation by u.v. irradiation is not due to the inactivation of the respiratory activities of mitochondria. In addition, we found that the anterior of Bicaudal-D mutant embryos at cleavage stage was stained with rhodamine 123 with the same intensity as the posterior of wild-type embryos. No pole cells form in the anterior of Bic-D embryos, where no restoration of mitochondrial activity occurs in the blastoderm stage. The posterior group mutations that we tested (staufen, oskar, tudor, nanos) and the terminal mutation (torso) did not alter staining pattern of the posterior with rhodamine 123.  相似文献   

19.
Synopsis Ultraviolet irradiation of tumour cells (Ehrlich tetraploid ascites tumour of mice, TO strain), supravitally stained with thiazine dyes (Azure II, Azure A, Methylene Blue, Toluidine Blue) or an oxazine dye (Brilliant Cresyl Blue), induces blue fluorescence in cytoplasmic bodies believed to be lipid droplets or lysosome-like bodies. Microspectrofluorometry of the inducible fluorescence in Ehrlich tumour cells gives bimodal excitation (340/394 nm) and emission (443/700 nm) curves.  相似文献   

20.
This impact was attained by medicinal laser application to alexandrite, dye, erbium and gallium arsenid in various conditions on cultures of pulmonic fibroblasts of human embryo. Obtained results were estimated by transmission and scanning microscopy. The highest cell destruction was observed in dye and alexandrite, being less expressed in gallium arsenid under laser irradiation. Impulsive action of erbium laser did not cause any substantional cell destruction. So, laser application to dye alexandrite and gallium arsenide for healing scar and contracture damages is completely justified for skin pathogeny.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号