首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adherence of Clostridium thermocellum to cellulose   总被引:22,自引:7,他引:15       下载免费PDF全文
The adherence of Clostridium thermocellum, a cellulolytic, thermophilic anaerobe, to its insoluble substrate (cellulose) was studied. The adherence phenomenon was determined to be selective for cellulose. The observed adherence was not significantly affected by various parameters, including salts, pH, temperature, detergents, or soluble sugars. A spontaneous adherence-defective mutant strain (AD2) was isolated from the wild-type strain YS. Antibodies were prepared against the bacterial cell surface and rendered specific to the cellulose-binding factor (CBF) by adsorption to mutant AD2 cells. By using these CBF-specific antibodies, crossed immunoelectrophoresis of cell extracts revealed a single discrete precipitation peak in the parent strain which was absent in the mutant. This difference was accompanied by an alteration in the polypeptide profile whereby sonicates of strain YS contained a 210,000-molecular-weight band which was missing in strain AD2. The CBF antigen could be removed from cell extracts by adsorption to cellulose. A combined gel-overlay--immunoelectrophoretic technique demonstrated that the cellulose-binding properties of the CBF were accompanied by carboxymethylcellulase activity. During the exponential phase of growth, a large part of the CBF antigen and related carboxymethylcellulase activity was associated with the cells of wild-type strain YS. However, the amounts decreased in stationary-phase cells. Cellobiose-grown mutant AD2 cells lacked the cell-associated CBF, but the latter was detected in the extracellular fluid. Increased levels of CBF were observed when cells were grown on cellulose. In addition, mutant AD2 regained cell-associated CBF together with the property of cellulose adherence. The presence of the CBF antigen and related adherence characteristics appeared to be a phenomenon common to other naturally occurring strains of this species.  相似文献   

2.
Campylobacter jejuni remains the leading cause of bacterial gastroenteritis in developed countries, and yet little is known concerning the mechanisms by which this fastidious organism survives within its environment. We have demonstrated that C. jejuni 11168 can form biofilms on a variety of surfaces. Proteomic analyses of planktonic and biofilm-grown cells demonstrated differences in protein expression profiles between the two growth modes. Proteins involved in the motility complex, including the flagellins (FlaA, FlaB), the filament cap (FliD), the basal body (FlgG, FlgG2), and the chemotactic protein (CheA), all exhibited higher levels of expression in biofilms than found in stationary-phase planktonic cells. Additional proteins with enhanced expression included those involved in the general (GroEL, GroES) and oxidative (Tpx, Ahp) stress responses, two known adhesins (Peb1, FlaC), and proteins involved in biosynthesis, energy generation, and catabolic functions. An aflagellate flhA mutant not only lost the ability to attach to a solid matrix and form a biofilm but could no longer form a pellicle at the air-liquid interface of a liquid culture. Insertional inactivation of genes that affect the flagellar filament (fliA, flaA, flaB, flaG) or the expression of the cell adhesin (flaC) also resulted in a delay in pellicle formation. These findings demonstrate that the flagellar motility complex plays a crucial role in the initial attachment of C. jejuni 11168 to solid surfaces during biofilm formation as well as in the cell-to-cell interactions required for pellicle formation. Continued expression of the motility complex in mature biofilms is unusual and suggests a role for the flagellar apparatus in the biofilm phenotype.  相似文献   

3.
Escherichia coli adherence to biotic and abiotic surfaces constitutes the first step of infection by promoting colonization and biofilm formation. The aim of this study was to gain a better understanding of the relationship between E. coli adherence to different biotic surfaces and biofilm formation on abiotic surfaces. We isolated mutants defective in A549 pneumocyte cells adherence, fibronectin adherence, and biofilm formation by random transposition mutagenesis and sequential passages over A549 cell monolayers. Among the 97 mutants tested, 80 were decreased in biofilm formation, 8 were decreased in A549 cells adherence, 7 were decreased in their adherence to fibronectin, and 17 had no perturbations in either of the three phenotypes. We observed a correlation between adherence to fibronectin or A549 cells and biofilm formation, indicating that biotic adhesive factors are involved in biofilm formation by E. coli. Molecular analysis of the mutants revealed that a transposon insertion in the tnaA gene encoding for tryptophanase was associated with a decrease in both A549 cells adherence and biofilm formation by E. coli. The complementation of the tnaA mutant with plasmid-located wild-type tnaA restored the tryptophanase activity, epithelial cells adherence, and biofilm formation on polystyrene. The possible mechanism of tryptophanase involvement in E. coli adherence and biofilm formation is discussed.  相似文献   

4.
Hwp1 is a well-characterized Candida albicans cell surface protein, expressed only on hyphae, that mediates tight binding to oral epithelial cells. Prior studies indicate that HWP1 expression is dependent upon Bcr1, a key regulator of biofilm formation. Here we test the hypothesis that Hwp1 is required for biofilm formation. In an in vitro model, the hwp1/hwp1 mutant produces a thin biofilm that lacks much of the hyphal mass found in the hwp1/HWP1 reconstituted strain. In a biofilm cell retention assay, we find that the hwp1/hwp1 mutant is defective in retention of nonadherent bcr1/bcr1 mutant cells. In an in vivo rat venous catheter model, the hwp1/hwp1 mutant has a severe biofilm defect, yielding only yeast microcolonies in the catheter lumen. These properties of the hwp1/hwp1 mutant are consistent with its role as a hypha-specific adhesin and indicate that it is required for normal biofilm formation. Overexpression of HWP1 in a bcr1/bcr1 mutant background improves adherence in the in vivo catheter model. This finding provides additional support for the model that Hwp1 is critical for biofilm adhesion. Hwp1 is the first cell surface protein known to be required for C. albicans biofilm formation in vivo and is thus an excellent therapeutic target.  相似文献   

5.
The food-borne pathogen Campylobacter jejuni is dependent on a functional flagellum for motility and the export of virulence proteins that promote maximal host cell invasion. Both the flagellar and non-flagellar proteins exported via the flagellar type III secretion system contain a sequence within the amino-terminus that directs their export from the bacterial cell. Accordingly, we developed a genetic screen to identify C. jejuni genes that encode a type III secretion amino-terminal sequence that utilizes the flagellar type III secretion system of Yersinia enterocolitica and a phospholipase reporter ( yplA ). We screened a library of 321 C. jejuni genes and identified proteins with putative type III secretion amino-terminal sequences. One gene identified by the screen was Cj1242. We generated a mutation in Cj1242 , and performed growth rate, motility, secretion and INT 407 cell adherence and internalization assays. The C. jejuni Cj1242 mutant was not altered in growth rate or motility when compared with the wild-type strain, but displayed an altered secretion profile and a reduction in host cell internalization. Based on the phenotype of the C. jejuni Cj1242 mutant, we designated the protein Campylobacter invasion antigen C (CiaC). Collectively, our findings indicate that CiaC is a potentially important virulence factor.  相似文献   

6.
Group A Streptococcus (GAS, Streptococcus pyogenes) is a Gram-positive human pathogen responsible for several acute diseases and autoimmune sequelae that account for half a million deaths worldwide every year. GAS infections require the capacity of the pathogen to adhere to host tissues and assemble in cell aggregates. Furthermore, a role for biofilms in GAS pathogenesis has recently been proposed. Here we investigated the role of GAS pili in biofilm formation. We demonstrated that GAS pilus-negative mutants, in which the genes encoding either the pilus backbone structural protein or the sortase C1 have been deleted, showed an impaired capacity to attach to a pharyngeal cell line. The same mutants were much less efficient in forming cellular aggregates in liquid culture and microcolonies on human cells. Furthermore, mutant strains were incapable of producing the typical three-dimensional layer with bacterial microcolonies embedded in a carbohydrate polymeric matrix. Complemented mutants had an adhesion and aggregation phenotype similar to the wild-type strain. Finally, in vivo expression of pili was indirectly confirmed by demonstrating that most of the sera from human patients affected by GAS-mediated pharyngitis recognized recombinant pili proteins. These data support the role of pili in GAS adherence and colonization and suggest a general role of pili in all pathogenic streptococci.  相似文献   

7.
A transposition mutant of Staphylococcus aureus was selected from the parent strain MT23142, a derivative of strain 8325. The site of transposition was near the 5' terminus of the gene arlS. ArlS exhibits strong similarities with histidine protein kinases. Sequence analysis suggested that arlS forms an operon with upstream gene arlR. The predicted product of arlR is a member of the OmpR-PhoB family of response regulators. The arlS mutant formed a biofilm on a polystyrene surface unlike the parent strain and the complemented mutant. Biofilm formation was associated with increased primary adherence to polystyrene, whereas cellular adhesion was only slightly decreased. In addition, the arlS mutant exhibited increased autolysis and altered peptidoglycan hydrolase activity compared to the parental strain and to the complemented mutant. As it has been shown for coagulase-negative staphylococci that some autolysins are able to bind polymer surfaces, these data suggest that the two-component regulatory system ArlS-ArlR may control attachment to polymer surfaces by affecting secreted peptidoglycan hydrolase activity. Finally, the arlS mutant showed a dramatic decrease of extracellular proteolytic activity, including serine protease activity, in comparison to the wild-type strain and the complemented mutant, and cells grown in the presence of phenylmethylsulfonyl fluoride (a serine protease inhibitor) showed an increased autolysin activity. Since the locus arlR-arlS strikingly modifies extracellular proteolytic activity, this locus might also be involved in the virulence of S. aureus.  相似文献   

8.
9.
Ju CX  Gu HW  Lu CP 《Journal of bacteriology》2012,194(6):1464-1473
Streptococcus suis serotype 2 (S. suis 2) is an important swine and human pathogen responsible for septicemia and meningitis. A novel gene, designated atl and encoding a major autolysin of S. suis 2 virulent strain HA9801, was identified and characterized in this study. The Atl protein contains 1,025 amino acids with a predicted molecular mass of 113 kDa and has a conserved N-acetylmuramoyl-l-alanine amidase domain. Recombinant Atl was expressed in Escherichia coli, and its bacteriolytic and fibronectin-binding activities were confirmed by zymography and Western affinity blotting. Two bacteriolytic bands were shown in the sodium dodecyl sulfate extracts of HA9801, while both were absent from the atl inactivated mutant. Cell chains of the mutant strain became longer than that of the parental strain. In the autolysis assay, HA9801 decreased to 20% of the initial optical density (OD) value, while the mutant strain had almost no autolytic activity. The biofilm capacity of the atl mutant was reduced ~30% compared to the parental strain. In the zebrafish infection model, the 50% lethal dose of the mutant strain was increased up to 5-fold. Furthermore, the adherence to HEp-2 cells of the atl mutant was 50% less than that of the parental strain. Based on the functional analysis of the recombinant Atl and observed effects of atl inactivation on HA9801, we conclude that Atl is a major autolysin of HA9801. It takes part in cell autolysis, separation of daughter cells, biofilm formation, fibronectin-binding activity, cell adhesion, and pathogenesis of HA9801.  相似文献   

10.
Peb4 from Campylobacter jejuni is an intertwined dimeric, periplasmic holdase, which also exhibits peptidyl prolyl cis/trans isomerase (PPIase) activity. Peb4 gene deletion alters the outer membrane protein profile and impairs cellular adhesion and biofilm formation for C. jejuni. Earlier crystallographic study has proposed that the PPIase domains are flexible and might form a cradle for holding the substrate and these aspects of Peb4 were explored using sub-microsecond molecular dynamics simulations in solution environment. Our simulations have revealed that PPIase domains are highly flexible and undergo a large structural change where they move apart from each other by 8 nm starting at .5 nm. Further, this large conformational change renders Peb4 as a compact protein with crossed-over conformation, forms a central cavity, which can “cradle” the target substrate. As reported for other chaperone proteins, flexibility of linker region connecting the chaperone and PPIase domains is key to forming the “crossed-over” conformation. The conformational transition of the Peb4 protein from the X-ray structure to the crossed-over conformation follows the “mother’s arms” chain model proposed for the FkpA chaperone protein. Our results offer insights into how Peb4 and similar chaperones can use the conformational heterogeneity at their disposal to perform its much-revered biological function.  相似文献   

11.
The PEB4 protein is an antigenic virulence factor implicated in host cell adhesion, invasion, and colonization in the food-borne pathogen Campylobacter jejuni. peb4 mutants have defects in outer membrane protein assembly and PEB4 is thought to act as a periplasmic chaperone. The crystallographic structure of PEB4 at 2.2-? resolution reveals a dimer with distinct SurA-like chaperone and peptidyl-prolyl cis/trans isomerase (PPIase) domains encasing a large central cavity. Unlike SurA, the chaperone domain is formed by interlocking helices from each monomer, creating a domain-swapped architecture. PEB4 stimulated the rate of proline isomerization limited refolding of denatured RNase T(1) in a juglone-sensitive manner, consistent with parvulin-like PPIase domains. Refolding and aggregation of denatured rhodanese was significantly retarded in the presence of PEB4 or of an engineered variant specifically lacking the PPIase domain, suggesting the chaperone domain possesses a holdase activity. Using bioinformatics approaches, we identified two other SurA-like proteins (Cj1289 and Cj0694) in C. jejuni. The 2.3-? structure of Cj1289 does not have the domain-swapped architecture of PEB4 and thus more resembles SurA. Purified Cj1289 also enhanced RNase T(1) refolding, although poorly compared with PEB4, but did not retard the refolding of denatured rhodanese. Structurally, Cj1289 is the most similar protein to SurA in C. jejuni, whereas PEB4 has most structural similarity to the Par27 protein of Bordetella pertussis. Our analysis predicts that Cj0694 is equivalent to the membrane-anchored chaperone PpiD. These results provide the first structural insights into the periplasmic assembly of outer membrane proteins in C. jejuni.  相似文献   

12.
A proteomic analysis of a soil-dwelling, plant growth-promoting Azotobacter vinelandii strain showed the presence of a protein encoded by the hypothetical Avin_16040 gene when the bacterial cells were attached to the Oryza sativa root surface. An Avin_16040 deletion mutant demonstrated reduced cellular adherence to the root surface, surface hydrophobicity, and biofilm formation compared to those of the wild type. By atomic force microscopy (AFM) analysis of the cell surface topography, the deletion mutant displayed a cell surface architectural pattern that was different from that of the wild type. Escherichia coli transformed with the wild-type Avin_16040 gene displayed on its cell surface organized motifs which looked like the S-layer monomers of A. vinelandii. The recombinant E. coli also demonstrated enhanced adhesion to the root surface.  相似文献   

13.
Differential gene expression in biofilm cells suggests that adding the derepressed conjugative plasmid R1drd19 increases biofilm formation by affecting genes related to envelope stress (rseA and cpxAR), biofilm formation (bssR and cstA), energy production (glpDFK), acid resistance (gadABCEX and hdeABD), and cell motility (csgBEFG, yehCD, yadC, and yfcV); genes encoding outer membrane proteins (ompACF), phage shock proteins (pspABCDE), and cold shock proteins (cspACDEG); and phage-related genes. To investigate the link between the identified genes and biofilm formation upon the addition of R1drd19, 40 isogenic mutants were classified according to their different biofilm formation phenotypes. Cells with class I mutations (those in rseA, bssR, cpxA, and ompA) exhibited no difference from the wild-type strain in biofilm formation and no increase in biofilm formation upon the addition of R1drd19. Cells with class II mutations (those in gatC, yagI, ompC, cspA, pspD, pspB, ymgB, gadC, pspC, ymgA, slp, cpxP, cpxR, cstA, rseC, ompF, and yqjD) displayed increased biofilm formation compared to the wild-type strain but decreased biofilm formation upon the addition of R1drd19. Class III mutants showed increased biofilm formation compared to the wild-type strain and increased biofilm formation upon the addition of R1drd19. Cells with class IV mutations displayed increased biofilm formation compared to the wild-type strain but little difference upon the addition of R1drd19, and class V mutants exhibited no difference from the wild-type strain but increased biofilm formation upon the addition of R1drd19. Therefore, proteins encoded by the genes corresponding to the class I mutant phenotype are involved in R1drd19-promoted biofilm formation, primarily through their impact on cell motility. We hypothesize that the pili formed upon the addition of the conjugative plasmid disrupt the membrane (induce ompA) and activate the two-component system CpxAR as well as the other envelope stress response system, RseA-sigma(E), both of which, along with BssR, play a key role in bacterial biofilm formation.  相似文献   

14.
Biofilm production is thought to be an important step in many enterococcal infections. In several Gram-positive bacteria, membrane glycolipids have been implicated in biofilm formation. We constructed a non-polar deletion mutant of a putative glucosyltransferase designated biofilm-associated glycolipid synthesis A ( bgsA ) in Enterococcus faecalis 12030. Analysis of major extracted glycolipids by nuclear magnetic resonance spectroscopy revealed that the cell membrane of 12030Δ bgsA was devoid of diglucosyl–diacylglycerol (DGlcDAG), while monoglucosyl–diacylglycerol was overrepresented. The cell walls of 12030Δ bgsA contained longer lipoteichoic acid molecules and were less hydrophobic than wild-type bacteria. Inactivation of bgsA in E. faecalis 12030 and E. faecalis V583 led to an almost complete arrest of biofilm formation on plastic surfaces. Overexpression of bgsA , on the other hand, resulted in increased biofilm production. While initial adherence was not affected, bgsA -deficient bacteria did not accumulate in the growing biofilm. Also, adherence of E. faecalis Δ bgsA to Caco-2 cells was impaired. In a mouse bacteraemia model, E. faecalis 12030Δ bgsA was cleared more rapidly from the bloodstream than the wild-type strain. In summary, BgsA is a glycosyltransferase synthetizing DGlcDAG, a glycolipid and lipoteichoic acid precursor involved in biofilm accumulation, adherence to host cells, and virulence in vivo .  相似文献   

15.
16.
We demonstrated previously that genetic inactivation of tryptophanase is responsible for a dramatic decrease in biofilm formation in the laboratory strain Escherichia coli S17-1. In the present study, we tested whether the biochemical inhibition of tryptophanase, with the competitive inhibitor oxindolyl-L-alanine, could affect polystyrene colonization by E. coli and other indole-producing bacteria. Oxindolyl-L-alanine inhibits, in a dose-dependent manner, indole production and biofilm formation by strain S17-1 grown in Luria-Bertani (LB) medium. Supplementation with indole at physiologically relevant concentrations restores biofilm formation by strain S17-1 in the presence of oxindolyl-L-alanine and by mutant strain E. coli 3714 (S17-1 tnaA::Tn5) in LB medium. Oxindolyl-L-alanine also inhibits the adherence of S17-1 cells to polystyrene for a 3-h incubation time, but mutant strain 3714 cells are unaffected. At 0.5 mg/mL, oxindolyl-L-alanine exhibits inhibitory activity against biofilm formation in LB medium and in synthetic urine for several clinical isolates of E. coli, Klebsiella oxytoca, Citrobacter koseri, Providencia stuartii, and Morganella morganii but has no affect on indole-negative Klebsiella pneumoniae strains. In conclusion, these data suggest that indole, produced by the action of tryptophanase, is involved in polystyrene colonization by several indole-producing bacterial species. Indole may act as a signalling molecule to regulate the expression of adhesion and biofilm-promoting factors.  相似文献   

17.
Campylobacter jejuni is a highly prevalent food-borne pathogen that causes diarrhoeal disease in humans. A natural zoonotic, it must overcome significant stresses both in vivo and during transmission despite the absence of several traditional stress response genes. Although relatively little is understood about its mechanisms of pathogenesis, its ability to interact with and invade human intestinal epithelial cells closely correlates with virulence. A C. jejuni microarray-based screen revealed that several known virulence genes and several uncharacterized genes, including spoT, were rapidly upregulated during infection of human epithelial cells. spoT and its homologue relA have been shown in other bacteria to regulate the stringent response, an important stress response that to date had not been demonstrated for C. jejuni or any other epsilon-proteobacteria. We have found that C. jejuni mounts a stringent response that is regulated by spoT. Detailed analyses of a C. jejuni delta spoT mutant revealed that the stringent response is required for several specific stress, transmission and antibiotic resistance-related phenotypes. These include stationary phase survival, growth and survival under low CO2/high O2 conditions, and rifampicin resistance. A secondary suppressor strain that specifically rescues the low CO2 growth defect of the delta spoT mutant was also isolated. The stringent response additionally proved to be required for the virulence-related phenotypes of adherence, invasion, and intracellular survival in two human epithelial cell culture models of infection; spoT is the first C. jejuni gene shown to participate in longer term survival in epithelial cells. Microarray analyses comparing wild-type to the delta spoT mutant also revealed a strong correlation between gene expression profiles and phenotype differences observed. Together, these data demonstrate a critical role for the C. jejuni stringent response in multiple aspects of C. jejuni biology and pathogenesis and, further, may lend novel insight into unexplored features of the stringent response in other prokaryotic organisms.  相似文献   

18.
Biofilm formation on a polymer surface which involves initial attachment and accumulation in multilayered cell clusters (intercellular adhesion) is proposed to be the major pathogenicity factor in Staphylococcus epidermidis foreign-body-associated infections. We have characterized two distinct classes of biofilm-negative Tn917 mutants in S. epidermidis affected in initial attachment (class A) or intercellular adhesion (class B). mut1 (class A mutant) lacks five surface-associated proteins with molecular masses of 120, 60, 52, 45 and 38 kDa and could be complemented by transformation with a 16.4 kb wild-type DNA fragment. The complemented mutant was able to attach to a polystyrene surface, to form a biofilm, and produced all of the proteins missing from mut1. Subcloning experiments revealed that the 60 kDa protein is sufficient for initial attachment. Immunofluorescence microscopy using an antiserum raised against the 60 kDa protein showed that this protein is located at the cell surface. DNA-sequence analysis of the complementing region revealed a single open reading frame which consists of 4005 nucleotides and encodes a deduced protein of 1335 amino acids with a predicted molecular mass of 148 kDa. The amino acid sequence exhibits a high similarity (61% identical amino acids) to the atl gene product of Staphylococcus aureus, which represents the major autolysin; therefore the open reading frame was designated atlE. By analogy with the S. aureus autolysin, AtlE is composed of two bacteriolytically active domains, a 60 kDa amidase and a 52 kDa glucosaminidase domain, generated by proteolytic processing. The 120 kDa protein missing from mut1 presumably represents the unprocessed amidase and glucosaminidase domain after proteolytic cleavage of the signal- and propeptide. The 45 and 38 kDa proteins are probably the degradation products of the 60 and 52 kDa proteins, respectively. Additionally, AtlE was found to exhibit vitronectin-binding activity, indicating that AtlE plays a role in binding of the cells not only to a naked polystyrene surface during early stages of adherence, but also to plasma protein-coated polymer surfaces during later stages of adherence. Our findings provide evidence for a new function of an autolysin (AtlE) in mediating the attachment of bacterial cells to a polymer surface, representing the prerequisite for biofilm formation.  相似文献   

19.
Although it is known that Campylobacter jejuni invade the cells that line the human intestinal tract, the bacterial proteins that enable this pathogen to survive within Campylobacter-containing vacuoles (CCV) have not been identified. Here, we describe the identification and characterization of a protein that we termed CiaI for Campylobacter invasion antigen involved in intracellular survival. We show that CiaI harbours an amino-terminal type III secretion sequence and is secreted from C. jejuni through the flagellar type III secretion system. In addition, the ciaI mutant was impaired in intracellular survival when compared with a wild-type strain, as judged by the gentamicin-protection assay. Fluorescence microscopy examination of epithelial cells infected with the C. jejuni ciaI mutant revealed that the CCV were more frequently co-localized with Cathepsin D (a lysosomal marker) than the CCV in cells infected with a C. jejuni wild-type strain. Ectopic expression of CiaI-GFP in epithelial cells yielded a punctate phenotype not observed with the other C. jejuni genes, and this phenotype was abolished by mutation of a dileucine motif located in the carboxy-terminus of the protein. Based on the data, we conclude that CiaI contributes to the ability of C. jejuni to survive within epithelial cells.  相似文献   

20.
During the initial steps of biofilm formation, bacteria have to adapt to a major change in their environment. The adhesion-induced phenotypic changes in a type 1 fimbriated Escherichia coli strain included reductions in the levels of several outer membrane proteins, one of which was identified as OmpX. Here, the phenotypes of mutant strains that differ at the ompX locus were studied with regard to adhesion, cell surface properties, and resistance to stress and antimicrobial compounds. The kinetics of adhesion were measured online by an extended quartz crystal microbalance technique for wild-type and mutant strains with a fimbriated or nonfimbriated background. Deletion of ompX led to significantly increased cell-surface contact in fimbriated strains but to decreased cell-surface contact in a nonfimbriated strain. Phenotypic characterization of the ompX mutant demonstrated that ompX interferes with proper regulation of cell surface structures that play a key role in mediating firm contact of the cell with a surface (i.e., type 1 fimbriae, flagellae, and exopolysaccharides). These phenotypic changes were accompanied by increased tolerance to several antibiotic compounds and sodium dodecyl sulfate. Based on these results, we propose that changes in the composition of outer membrane proteins during fimbria-mediated adhesion may be part of a coordinated adaptive response to the attached mode of growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号