首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Human Carbonic anhydrase (hCA) I and II are crucial targets for anti-acute mountain sickness. Twenty-one 4-(1,3,4-oxadiazol-2-yl) benzenesulfonamides were synthesized and screened against these two isoforms. The results illustrated that 5c, 5g, 5h, 5k were more potent against both hCA I and II than clinical drug AAZ. In particular, the value of compound 5c with hCA I (18.08 nM) was over 84-fold more than of AAZ with hCA I. The data of docking simulations were also in accord with the tendency of inhibitive activities. Furthermore, compound 6h, the methanesulfonate of 5h, showed better anti-hypoxia activity than AAZ in vivo, making it interesting lead compound.  相似文献   

3.
The hydrolysis of 4-nitrophenyl acetate by metal complexes Co(en)2(imH)H2O3+, Co(en)2(bzmH)H2O3+, and Co(en)2(imCH3)H2O3+ (imH = imidazole, bzmH = benzimodazole, imCH3 = methyl imidazole) has been investigated in the pH range 5.4-8.9. The small difference in nucleophilic reactivity in the pH range 5.4-6.7 is assumed to be due to hydrogen bonding abilities of the imidazole and substituted imidazole ligands and small pKa differences (k2(imH) = 2.2 X 10(-2) M-1 sec-1, k2(bzmH) = 5.68 X 10(-2) M-1 sec-1, k2(imCH3) = 1.35 X 10(-2) M-1 sec-1, 40 degrees C, 1 = 0.3 NaClO4, pKa(imH) = 6.2, pKa(imCH3) = 6.2 and pKa(bzmH) = 5.9). In the pH range 7.8-8.9, the differences in nucleophilic reactivity (k3(imH) = 85.5 X 10(-2) M-1 sec-1, k3(bzmH) = 33.4 X 10(-2) M-1 sec-1, 40 degrees C, I = 0.3 NaClO4) are reconciled with a significant steric factor outweighing the acidity of the benzimidazole complex. In the pH region 6.7-7.7, the deviation from linearity is presumably due to both hydroxo and imido ligands functioning as nucleophiles, the latter being about 40 times stronger than the former.  相似文献   

4.
The title family of mixed-ligand oxidovanadium(V) hydrazone complexes are [VVO(HL1)(hq)] (1) and [VVO(HL2)(hq)] (2), where (HL1)2? and (HL2)2? are the dinegative form of 2-hydroxybenzoylhydrazone of acetylacetone (H3L1) and benzoylacetone (H3L2), respectively, and hq? is the mononegative form of 8-hydroxyquinoline (Hhq). Complexes were used to determine their binding constant with CT DNA using various spectroscopic techniques namely, electronic absorption, fluorescence and circular dichroism spectroscopy. The binding constant values suggest the intercalative mode of binding with the CT DNA and follow the order: 2 > 1. The bulky size as well as electron withdrawing property of the phenyl group (which is present in the β-diketone part of the hydrazone moiety in complex 2 in place of a CH3 group in complex 1) is responsible for the higher activity of 2 than 1. Complexes were screened for cytotoxic activity on cervical cancer cells and were found to be potentially active (IC50 value for 1 and 2 is 33 and 29 μM, respectively), even better than the widely used cis-platin (IC50 = 63.5 μM) and carboplatin (IC50 = > 200 μM) which is evident from the respective IC50 value. Nuclear staining experiment suggests that these complexes kill the SiHa cancer cells through apoptotic mode. The molecular docking study also suggested the intercalative mode of binding of these complexes with CT DNA and HPV 18 DNA.  相似文献   

5.
Series of chromone containing sulfonamides were prepared by the reaction of (un)substituted 3-formylchromones with 3-aminobenzenesulfonamide and 4-aminobenzenesulfonamide. Bovine carbonic anhydrase (bCA) inhibitory activity of these newly synthesized compounds was determined. All compounds were active and possessed excellent bCA inhibitory activities with IC?? values ranged between 4.31 ± 0.001 and 29.12 ± 0.008 μmol. Compounds derived from 6-fluoro-3-formylchromones were the most active.  相似文献   

6.
A series of 1,2,3-triazole-bearing benzenesulfonamides was assessed for the inhibition of carbonic anhydrases (CA, EC 4.2.1.1) from bacteria Vibrio cholerae (VchCAα and VchCAβ) and Mycobacterium tuberculosis (β-mtCA3). Growing resistance phenomena against existing antimicrobial drugs are globally spreading and highlight a urgent need of agents endowed with alternative mechanisms of action. Two global WHO strategies aim to reduce cholera deaths by 90% and eradicate the tuberculosis epidemic by 2030. The derivatives here reported represent interesting leads towards the optimization of new antibiotic agents showing excellent inhibitory efficiency and selectivity for the target CAs over the human (h) off-target isoform hCA I. In detail, the first subset of derivatives potently inhibits VchCAα in a low nanomolar range (KIs between 0.72 and 22.6 nM). Compounds of a second subset, differing from the first one for the position of the spacer between benzenesulfonamide and triazole, preferentially inhibit VchCAβ (KIs in the range 54.8–102.4 nM) and β-mtCA3 (KIs in the range 28.2–192.5 nM) even more than the clinically used AAZ, used as the standard.  相似文献   

7.
A novel series of thio- and seleno-acetamides bearing benzenesulfonamide were synthetized and tested as human carbonic anhydrase inhibitors. These compounds were tested for the inhibition of four human (h) isoforms, hCA I, II, IX, and XII, involved in pathologies such as glaucoma (CA II and XII) or cancer (CA IX/XII). Several derivatives showed potent inhibition activity in low nanomolar range such as 3a, 4a, 7a and 8a. Furthermore, based on the tail approach we explain the interesting and selective inhibition profile of compound such as 5a and 9a, which were more selective for hCA I, 9b which was selective for hCA II, 3f selective for hCA IX and finally, 3e and 4b selective for hCA XII, over the other three isoforms. They are interesting leads for the development of more effective and isoform-selective inhibitors.  相似文献   

8.
A large number of novel secondary sulfonamides based on the open saccharin scaffold were synthesized and evaluated as selective inhibitors of four different isoforms of human carbonic anhydrase (hCA I, II, IX and XII, EC 4.2.1.1). They were obtained by reductive ring opening of the newly synthesized N-alkylated saccharin derivatives and were shown to be inactive against the two cytosolic off-target hCA I and II (Kis?>?10?µM). Interestingly, these compounds inhibited hCA IX in the low nanomolar range with Kis ranging between 20 and 298?nM and were extremely potent inhibitors of hCA XII isoenzyme (Kis ranging between 4.3 and 432?nM). Since hCA IX and XII are the cancer-related isoforms recently validated as drug targets, these results represent an important goal in the development of new anticancer candidates. Finally, a computational approach has been performed to better correlate the biological data to the binding mode of these inhibitors.  相似文献   

9.
Small libraries of N-substituted saccharin and N-/O-substituted acesulfame derivatives were synthesized and tested as atypical and selective inhibitors of four different isoforms of human carbonic anhydrase (hCA I, II, IX and XII, EC 4.2.1.1). Most of them inhibited hCA XII in the low nanomolar range, hCA IX with KIs ranging between 19 and 2482 nM, whereas they were poorly active against hCA II (KIs >10 μM) and hCA I (KIs ranging between 318 nM and 50 μM). Since hCA I and II are ubiquitous off-target isoforms, whereas the cancer-related isoforms hCA IX and XII were recently validated as drug targets, these results represent an encouraging achievement in the development of new anticancer candidates. Moreover, the lack of a classical zinc binding group in the structure of these inhibitors opens innovative, yet unexplored scenarios for different mechanisms of inhibition that could explain the high inhibitory selectivity. A computational approach has been carried out to further rationalize the biological data and to characterize the binding mode of some of these inhibitors.  相似文献   

10.
Starting from the molecular simplification of (R) 4-(3,4-dibenzylpiperazine-1-carbonyl)benzenesulfonamide 9a, a compound endowed with selectivity for human Carbonic Anhydrase (hCA) IV, a series of piperazines and 4-aminopiperidines carrying a 4-sulfamoylbenzamide moiety as Zn-binding group have been designed and tested on human isoforms hCA I, II, IV and IX, using a stopped flow CO2 hydrase assay. The aim of the work was to derive structure-activity relationships useful for designing isoform selective compounds. These structural modifications changed the selectivity profile of the analogues from hCA IV to hCA I and II, and improved potency. Several of the new compounds showed subnanomolar activity on hCA II. X-ray crystallography of ligand-hCAII complexes was used to compare the binding modes of the new piperazines and the previously synthesized 2-benzyl-piperazine analogues, explaining the inhibition profiles.  相似文献   

11.
A series of substituted pyrazole compounds (18 and 9a, b) were synthesized and their structure was characterized by IR, NMR, and Mass analysis. These obtained novel pyrazole derivatives (18 and 9a, b) were emerged as effective inhibitors of the cytosolic carbonic anhydrase I and II isoforms (hCA I and II) and acetylcholinesterase (AChE) enzymes with Ki values in the range of 1.03 ± 0.23–22.65 ± 5.36 µM for hCA I, 1.82 ± 0.30–27.94 ± 4.74 µM for hCA II, and 48.94 ± 9.63–116.05 ± 14.95 µM for AChE, respectively. Docking studies were performed for the most active compounds, 2 and 5, and binding mode between the compounds and the receptors were determined.  相似文献   

12.
13.
[VIVO(acac)2] reacts with the methanol solution of tridentate ONO donor hydrazone ligands (H2L1-4, general abbreviation H2L; are derived from the condensation of benzoyl hydrazine with 2-hydroxyacetophenone and its 5-substituted derivatives) in presence of neutral monodentate alkyl amine bases having stronger basicity than pyridine e.g., ethylamine, diethylamine, triethylamine and piperidine (general abbreviation B) to produce BH+[VO2L] (1-16) complexes. Five of these sixteen complexes are structurally characterized revealing that the vanadium is present in the anionic part of the molecule, [VO2L] in a distorted square pyramidal environment. The complexes 5, 6, 15 and 16 containing two H-atoms associated with the amine-N atom in their cationic part (e.g., diethylammonium and piperidinium ion) are involved in H-bonding with a neighboring molecule resulting in the formation of centrosymmetric dimers while the complex 12 (containing only one hydrogen atom in the cationic part) exhibits normal H-bonding. The nature of the H-bonds in each of the four centrosymmetric dimeric complexes is different. These complexes have potential catalytic activity in the aerial oxidation of l-ascorbic acid and are converted into the [VO(L)(hq)] complexes containing VO3+ motif on reaction with equimolar amount of 8-hydroxyquinoline (Hhq) in methanol.  相似文献   

14.
The treatment of chronic neuropathic pain remains one of the most challenging of all neurological diseases and very much an art. There exists no consensus for the optimal management of this condition at the moment. Gaining inspiration from recent studies which pointed out the involvement of brain-associated carbonic anhydrase (CA, EC 4.2.1.1) isoform VII in the pathology of various neurodegenerative diseases, which highlighted the relationship between selective inhibition of this isozyme and relieve of neuropathic pain, herein we report the synthesis and CA VII inhibitory activity of novel 4-(3-alkyl/benzyl-guanidino)benzenesulfonamides. Ten benzyl-substituted and five alkyl-substituted 4-guanidinobenzenesulfonamide derivatives were obtained, some of which (7c, 7h, 7m and 7o) exhibited satisfactory selectivity towards CA VII over CA I and II, with KI-s in the subnanomolar range and good selectivity indexes for inhibiting the target versus the off-target isoforms.  相似文献   

15.
In this study, we have synthesised (3,4-dihydroxyphenyl)(2,3,4-trihydroxyphenyl)methanone and a series of its derivatives (5, 13–16) and tested the ability of these compounds to inhibit two metalloenzyme human carbonic anhydrase (hCA, EC 4.2.1.1) isozymes, hCA I and hCA II. The synthesised compounds showed inhibitory effect on hCA I and hCA II isozymes. The results showed that synthesised compounds (5, 13–16) demonstrated the best inhibition activity against hCA I (IC50: 3.22–54.28 μM) and hCA II (IC50: 18.52–142.01 μM). The compound 14 showed the highest inhibiton effect against hCA I (IC50: 3.22 μM; Ki: 1.19?±?1.4 μM). On the other hand, the compound 13 showed the highest inhibiton effect against hCA II (IC50: 18.52 μM; Ki: 3.25?±?1.13 μM).  相似文献   

16.
A series of iminothiazolidinone-sulfonamide hybrids (2a-k) was synthesized by heterocyclization of sulfanilamide thioureas with methyl bromoacetate and characterized by spectroscopic techniques, mass and elemental analysis. The synthesized derivatives were screened against four relevant human (h) isoforms of carbonic anydrases (CAs, EC 4.2.1.1) I, II, IV and IX. These enzymes are involved in a variety of diseases, including glaucoma, retinitis pigmentosa, epilepsy, arthritis, and tumors. Derivatives 2a-2k exhibited the best inhibitory activity against the cytosolyc hCA II (KIs are reaching the sub-nanomolar range, 0.41–37.8 nM) and against the tumor-associated isoform hCA IX (KIs are spanning between 24.3 and 368.3 nM). The binding mode of the reported iminothiazolidinone benzenesulfonamides within hCA II and IX catalytic clefts was investigated by docking studies.  相似文献   

17.
Novel pyrazolylbenzo[d]imidazole derivatives (2a2f) were designed, synthesized and evaluated against four human carbonic anhydrase isoforms belonging to α family comprising of two cytosolic isoforms hCA I and II as well as two transmembrane tumor associated isoforms hCA IX and XII. Starting from these derivatives that showed high potency but low selectivity in favor of tumor associated isoforms hCA IX and XII, we investigated the impact of removing the sulfonamide group. Thus, analogs 3a3f without sulfonamide moiety were synthesized and biological assay revealed a good activity as well as an excellent selectivity as inhibitors for tumor associated hCA IX and hCA XII and the same was analyzed by molecular docking studies.  相似文献   

18.
Three series of novel heterocyclic compounds (3a3g, 4a4g and 5a5g) containing benzenesulfonamide moiety and incorporating a 1,2,4-triazole ring, have been synthesized and investigated as inhibitors against four isomers of the α-class carbonic anhydrases (CAs, EC 4.2.1.1), comprising hCAs I and II (cytosolic, ubiquitous isozymes) and hCAs IX and XII (transmembrane, tumor associated isozymes). Against the human isozymes hCA I and II, compounds of two series (3a3g and 4a4g) showed Ki values in the range of 84–868 nM and 5.6–390 nM, respectively whereas compounds of series 5a5g were found to be poor inhibitors (Ki values exceeding 10,000 nM in some cases). Against hCA IX and XII, all the tested compounds exhibited excellent to moderate inhibitory potential with Ki values in the range of 2.8–431 nM and 1.3–63 nM, respectively. Compounds 3d, 3f and 4f exhibited excellent inhibitory potential against all of the four isozymes hCA I, II, IX and XII, even better than the standard drug acetazolamide (AZA) whereas compound of the series 5a5g were comparatively less potent but more selective towards hCA IX and XII.  相似文献   

19.
We describe the synthesis and biological evaluation of a series of diarylmethyloxime and diarylmethylhydrazone analogues that contain an indole ring and different modifications on the nitrogen of the bridge. Several compounds showed potent tubulin polymerization inhibitory action as well as cytotoxic activity against cancer cell lines. The N-methyl-5-indolyl substituted analogues are more potent than ethyl substituted ones. The most potent inhibitors of tubulin polymerization are the diarylketones and the diaryloximes. The cytotoxicity against several cancer cell lines is lower for the oximes than for the ketones. Other substitutions on the imine nitrogen greatly reduce the tubulin inhibitory and/or cytotoxic potencies.  相似文献   

20.
In the current work, we report the discovery of new sulfonate and sulfamate derivatives of benzofuran- and benzothiophene as potent inhibitors of human carbonic anhydrases (hCAs) II, IX and XII. A set of derivatives, 1a–t, having different substituents on the fused benzofuran and benzothiophene rings (R = alkyl, cyclohexyl, aryl, NH2, NHMe, or NMe2) was designed and synthesized. Most of the derivatives exhibited higher potency than acetazolamide as inhibitors of the purified hCAII, IX and XII isoforms. The most potent inhibitors for hCAII, hCAIX and hCAXII were 1g, 1b and 1d with an IC50 ± SEM values of 0.14 ± 0.03, 0.13 ± 0.03 and 0.17 ± 0.06 µM, respectively. In addition, compounds 1d and 1n exerted preferential inhibitory effect against hCAXII isozyme with good potencies. Some selected compounds were docked within the active pocket of these isozymes and binding of the molecules revealed that sulfonate and sulfamate rings were located towards the active cavity and compounds coordinated to zinc ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号