首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background

Apolipoprotein E (ApoE) is a molecular scavenger in the blood and brain. Aberrant function of the molecule causes formation of protein and lipid deposits or "plaques" that characterize Alzheimer's disease (AD) and atherosclerosis. There are three human isoforms of ApoE designated ε2, ε3, and ε4. Each isoform differentially affects the structure and function of the protein and thus the development of disease. Homozygosity for ApoE ε4 is associated with atherosclerosis and Alzheimer's disease whereas ApoE ε2 and ε3 tend to be protective. Furthermore, the ε2 form may cause forms of hyperlipoproteinemia. Therefore, introduction of ApoE ε3 may be beneficial to patients that are susceptible to or suffering from these diseases. Mesenchymal stem cells or multipotent mesenchymal stromal cells (MSCs) are adult progenitor cells found in numerous tissues. They are easily expanded in culture and engraft into host tissues when administered appropriately. Furthermore, MSCs are immunosuppressive and have been reported to engraft as allogeneic transplants. In our previous study, mouse MSCs (mMSCs) were implanted into the brains of ApoE null mice, resulting in production of small amounts of ApoE in the brain and attenuation of cognitive deficits. Therefore human MSCs (hMSCs) are a promising vector for the administration of ApoE ε3 in humans.

Results

Unlike mMSCs, hMSCs were found not to express ApoE in culture; therefore a molecular screen was performed for compounds that induce expression. PPARγ agonists, neural stem cell conditioned medium, osteo-inductive media, dexamethasone, and adipo-inductive media (AIM) were tested. Of the conditions tested, only AIM or dexamethasone induced sustained secretion of ApoE in MSCs and the duration of secretion was only limited by the length of time MSCs could be sustained in culture. Upon withdrawal of the inductive stimuli, the ApoE secretion persisted for a further 14 days.

Conclusion

The data demonstrated that pre-treatment and perhaps co-administration of MSCs homozygous for ApoE ε3 and dexamethasone may represent a novel therapy for severe instances of AD, atherosclerosis and other ApoE-related diseases.  相似文献   

2.
Fracture healing is a complex physiological process. Local vascularity at the site of the fracture has been established as one of the most important factors influencing the healing process, and lack of vascularity has been implicated in atrophic non unions. Existing research has primarily involved utilising Mesenchymal Stem Cells (MSCs) to augment bone healing but there remains much scope to explore the role of stem cells in the vascularisation process. Endothelial Progenitor Cells (EPCs) and other Endothelial Cellular populations (ECs) could constitute a valid alternative to MSCs. This systematic review is examining the importance of co-implantation of MSCs and EPCs/ECs for bone healing. A literature search was performed using the Cochrane Library, OVID Medline, OVID EMBASE and Google Scholar, searching for combinations of the terms EPCs, Endothelial progenitor cells, angiogenesis, fracture, bone and healing. Finally 18 articles that fulfilled our criteria were included in this review. ECs could be of value for the treatment of critical size bone defects as they are known to be capable of forming ectopic, vascularised bone. The co-implantation of ECs with MSCs is more intriguing when we take into account the vast array of complex reciprocal interactions between ECs and MSCs.  相似文献   

3.
Growing cell-based myocardial therapies which could lead to successful myocardial repair attracts medical interest. Even more intriguing is the observation that MSCs appears to be a more potent material among kinds of stem cells for the transplantation, the mechanism for this benefit remains unclear. However, the therapeutic contribution of MSCs to myocardial repair can be caused by multiple factors including: direct differentiation into cardiac tissue including cardiomyocytes, smooth muscle cell, and vascular endothelial cells; secreting a variety of cytokines and growth factors that have paracrine activities; spontaneous cell fusion; and stimulating endogenous repair. In addition, MSCs possess local immunosuppressive properties, and MSCs mobilization is widely used clinically for transplantation. We will discusses the potential mechanisms of MSCs repair for ischemic heart diseases.  相似文献   

4.
Mesenchymal stem cells (MSCs) are known to be an attractive cell source for tissue engineering and regenerative medicine. One of the main limiting steps for clinical use or biotechnological purposes is the expansion step. The research of compatible biomaterials for MSCs expansion is recently regarded as an attractive topic. The aim of this study was to create new functional biomaterial for MSCs expansion by evaluating the impact of chitosan derivative films modified by enzymatic approach. First, chitosan particles were enzymatically modified with ferulic acid (FA) or ethyl ferulate (EF) under an eco‐friendly procedure. Then, films of chitosan and its modified derivatives were prepared and evaluated by physicochemical and biological properties. Results showed that the enzymatic grafting of FA or EF onto chitosan significantly increased hydrophobic and antioxidant properties of chitosan films. The MSCs cell viability on chitosan derivative films also increased depending on the film thickness and the quantity of grafted phenols. Furthermore, the cytotoxicity test showed the absence of toxic effect of chitosan derivative films towards MSCs cells. Cell morphology showed a well attached and spread phenotype of MSCs cells on chitosan derivative films. On the other hand, due to the higher phenol content of FA‐chitosan films, their hydrophobic, antioxidant properties and cell adhesion were improved in comparison with those of EF‐chitosan films. Finally, this enzymatic process can be considered as a promising process to favor MSCs cell growth as well as to create useful biomaterials for biomedical applications especially for tissue engineering. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:491–500, 2016  相似文献   

5.
6.
Mesenchymal stem cells (MSCs) are a population of pluripotent cells within the bone marrow microenvironment defined by their ability to differentiate into cells of the osteogenic, chondrogenic, tendonogenic, adipogenic, and myogenic lineages. We have developed methodologies to isolate and culture-expand MSCs from human bone marrow, and in this study, we examined the MSC's role as a stromal cell precursor capable of supporting hematopoietic differentiation in vitro. We examined the morphology, phenotype, and in vitro function of cultures of MSCs and traditional marrow-derived stromal cells (MDSCs) from the same marrow sample. MSCs are morphologically distinct from MDSC cultures, and flow cytometric analyses show that MSCs are a homogeneous cell population devoid of hematopoietic cells. RT-PCR analysis of cytokine and growth factor mRNA in MSCs and MDSCs revealed a very similar pattern of mRNAs including IL-6, -7, -8, -11, -12, -14, and -15, M-CSF, Flt-3 ligand, and SCF. Steady-state levels of IL-11 and IL-12 mRNA were found to be greater in MSCs. Addition of IL-1α induced steady-state levels of G-CSF and GM-CSF mRNA in both cell preparations. In contrast, IL-1α induced IL-1α and LIF mRNA levels only in MSCs, further emphasizing phenotypic differences between MSCs and MDSCs. In long-term bone marrow culture (LTBMC), MSCs maintained the hematopoietic differentiation of CD34+ hematopoietic progenitor cells. Together, these data suggest that MSCs represent an important cellular component of the bone marrow microenvironment. J. Cell. Physiol. 176:57–66, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

7.
8.
Pluripotent mesenchymal stem-like cell lines were established from lungs of 3–4 months old aborted fetus. The cells present the high ex vivo expansion potential of MSC, a typical fibroblast-like morphology and proliferate up to 15 passages without displaying clear changes in morphology. Immunological localization and flow cytometry analyses showed that these cells are positive for OCT4, c-Kit, CD11, CD29, CD44, telomerase, CD106, CD105, CD166, and SSEA1, weakly expression or negative for SSEA1, SSEA3, SSEA4, CD34, CD105 and CD106. These cells can give rise to the adipogenic as evidenced by accumulation of lipid-rich vacuoles within cells identified by Oil-red O when they were induced with 0.5 mM isobutylmethylxanthine, 200 μM indomethacin, 10−6 M dexamethasone, and 10 μg/ml of insulin in high-glucose DMEM. Osteogenic lineage cells were generated in 0.1 μM dexamethasone, 50 μg/ml ascorbic acid, 10 mM β-glycerophosphate, which are shaped as the osteoblastic morphology, expression of alkaline phosphatase (AP), and the formation of a mineralized extracellular matrix identified by Alizarin Red staining. Neural cells are observed when the cultures were induced with 2-mercapometal, which are positive for nestin, NF-100, MBP and GFAP. Additionally, embryoid bodies (EBs) and sperm like cells are obtained in vitro differentiation of these lung MSCs induced with 10−5 M retinoic acid (RA). These results demonstrated that these MSCs are pluripotent and may provide an in vitro model to study germ-cell formation and also as a potential source of sperms for male infertility.  相似文献   

9.
Mesenchymal stem cells (MSCs) have various roles in the body and cellular environment, and the cellular phenotypes of MSCs changes in different conditions. MSCs support the maintenance of other cells, and the capacity of MSCs to differentiate into several cell types makes the cells unique and full of possibilities. The involvement of MSCs in the epithelial-mesenchymal transition is an important property of these cells. In this review, the role of MSCs in cell life, including their application in therapy, is first described, and the signaling mechanism of MSCs is investigated for a further understanding of these cells.  相似文献   

10.
Mesenchymal stem cells(MSCs) have various roles in the body and cellular environment, and the cellular phenotypes of MSCs changes in different conditions. MSCs support the maintenance of other cells, and the capacity of MSCs to differentiate into several cell types makes the cells unique and full of possibilities. The involvement of MSCs in the epithelial-mesenchymal transition is an important property of these cells. In this review, the role of MSCs in cell life, including their application in therapy, is first described, and the signaling mechanism of MSCs is investigated for a further understanding of these cells.  相似文献   

11.

Background

Mesenchymal stem cells (MSCs) are a promising cell source for bone and cartilage tissue engineering as they can be easily isolated from the body and differentiated into osteoblasts and chondrocytes. A cell based tissue engineering strategy using MSCs often involves the culture of these cells on three-dimensional scaffolds; however the size of these scaffolds and the cell population they can support can be restricted in traditional static culture. Thus dynamic culture in bioreactor systems provides a promising means to culture and differentiate MSCs in vitro.

Scope of review

This review seeks to characterize key MSC differentiation signaling pathways and provides evidence as to how dynamic culture is augmenting these pathways. Following an overview of dynamic culture systems, discussion will be provided on how these systems can effectively modify and maintain important culture parameters including oxygen content and shear stress. Literature is reviewed for both a highlight of key signaling pathways and evidence for regulation of these signaling pathways via dynamic culture systems.

Major conclusions

The ability to understand how these culture systems are affecting MSC signaling pathways could lead to a shear or oxygen regime to direct stem cell differentiation. In this way the efficacy of in vitro culture and differentiation of MSCs on three-dimensional scaffolds could be greatly increased.

General significance

Bioreactor systems have the ability to control many key differentiation stimuli including mechanical stress and oxygen content. The further integration of cell signaling investigations within dynamic culture systems will lead to a quicker realization of the promise of tissue engineering and regenerative medicine. This article is part of a Special Issue entitled Biochemistry of Stem Cells.  相似文献   

12.
We have characterized adhesion molecules on the surface of multipotential human mesenchymal stem cells (hMSCs) and identified molecules whose ligands are present on mature hematopoietic cells. Flow cytometric analysis of hMSCs identified the expression of integrins: alpha1, alpha2, alpha3, alpha5, alpha6, alphav, beta1, beta3, and beta4, in addition to ICAM-1, ICAM-2, VCAM-1, CD72, and LFA-3. Exposure of hMSCs to IL-1alpha, TNFalpha or IFNgamma up-modulated ICAM-1 surface expression, whereas only IFNgamma increased both HLA-class I and -class II molecules on the cell surface. Whole cell-binding assays between the hMSCs and hematopoietic cell lines showed that T lymphocytic lines bound hMSCs with higher affinity than lines of either B lymphocytes or those of myeloid lineage. Experiments using autologous T lymphocytes isolated from peripheral blood mononuclear cells showed that hMSCs exhibited increased affinity for activated T-lymphocytes compared to resting T cells by quantitative whole cell binding and rosetting assays. Flow cytometric analysis of rosetted cells demonstrated that both CD4+ and CD8+ cells bound to hMSCs. To determine the functional significance of these findings, we tested the ability of hMSCs to present antigen to T lymphocytes. hMSCs pulsed with tetanus toxoid stimulated proliferation and cytokine production (IL-4, IL-10, and IFNgamma) in a tetanus-toxoid-specific T cell line. Maximal cytokine production correlated with maximal antigen-dependent proliferation. These data demonstrate physiological outcome as a consequence of interactions between hMSCs and human hematopoietic lineage cells, suggesting a role for hMSCs in vivo to influence both hematopoietic and immune function(s).  相似文献   

13.
Molecular Biology Reports - Among medicinal plants, Acridocarpus orientalis (AO) possesses a remarkable anti-cancer potential, possibly because of its anti-oxidant property. In this study, the leaf...  相似文献   

14.
Altered expression of multiple miRNAs was found to be extensively involved in the pathogenesis of different neurological disorders including Alzheimer's disease, Parkinson's disease, stroke, epilepsy, multiple sclerosis, amyotrophic lateral sclerosis, and Huntington's disease. One of the biggest concerns within gene-based therapy is the delivery of the therapeutic microRNAs to the intended place, which is obligated to surpass the biological barriers without undergoing degradation in the bloodstream or renal excretion. Hence, the delivery of modified and unmodified miRNA molecules using excellent vehicles is required. In this light, mesenchymal stem cells (MSCs) have attracted increasing attention. The MSCs can be genetically modified to express or overexpress a particular microRNA aimed with promote neurogenesis and neuroprotection. The current review has focused on the therapeutic capabilities of microRNAs-overexpressing MSCs to ameliorate functional deficits in neurological conditions.  相似文献   

15.
16.
Apoptosis of implanted mesenchymal stem cells (MSCs) limits the efficiency of MSC therapy. Recent studies showed the ligands of Toll-like receptors (TLRs) could control the function of these cells. We have investigated the effect of lipopolysaccharides (LPS), a ligand of TLR4, on the survival of MSCs and explored the roles of TLR4 and PI3K/Akt. H2O2/serum deprivation(H2O2/SD) induced apoptosis of MSCs but LPS-preconditioning (1.0 μg/ml) protected MSCs from H2O2/SD-induced apoptosis and promoted their proliferation. Western blotting showed that 1.0 μg/ml LPS enhanced phosphorylation of both Akt at Ser 473 and nuclear factor-kappa B (NF-κB) p65 at Ser 536. However, the protective effects of LPS on survival were not observed in TLR4lps-del MSCs. The results suggest appropriate treatments with LPS can protect MSCs from oxidative stress-induced apoptosis and improve the survival of MSCs via the TLR4 and PI3K/Akt pathway.  相似文献   

17.
Rheumatoid arthritis (RA) is the most common degenerative arthritic cartilage and represents a disease where the prospect of stem cell therapy offers considerable hope. Currently, bone marrow (BM) represents the major source of mesenchymal stem cells (MSCs) for cell therapy. In the pathology of RA, the pro-inflammatory cytokines, such as interleukin 6 (IL-6) play a pivotal role. To investigate the direct role of IL-6 in the chondrogenic differentiation of murine MSCs (mMSCs), we isolate MSCs from the murine bone marrow, and induce MSCs chondrogenesis with different concentrations of IL-6 in vitro. Through detecting the histological and histochemical qualities of the aggregates, we demonstrate that IL-6 inhibited the differentiation of MSCs into chondrocytes in the dose-dependence manner. These findings suggest that possible strategies for improving the clinical outcome of cartilage repair procedures.  相似文献   

18.
The aim of this study is to evaluate the collagen/hyaluronic acid (Col/HA) scaffold effect on the differentiation of insulin-producing cells (IPCs) from adipose-derived mesenchymal stem cells (ASCs). In this experimental study, ASCs were cultured and seeded in a Col/HA scaffold (3D culture) and then treated with induction media. After induction, the presence of IPCs was evaluated using gene expression (PDX-1, GLUT-2 and insulin) analysis and immunocytochemistry, while functional maturity was determined by measuring insulin release in response to low- and high-glucose media. The induced IPCs were morphologically similar to pancreatic islet-like cells. Expression of the islet-associated genes PDX-1, GLUT-2 and insulin genes in 3D-cultured cells was markedly higher than the 2D-cultured cells exposure differentiation media. Compared to the 2D culture of ASCs-derived IPCs, the insulin release from 3D ASCs-derived IPCs showed a nearly 4-fold (p?<?0.05) increase when exposed to a high glucose (25 mmol) medium. The percentage of insulin-positive cells in the 3D experimental group showed an approximately 4-fold increase compared to the 2D experimental culture cells. The results of this study demonstrated that the COL/HA scaffold can enhance the differentiation of IPCs from rat ASCs.  相似文献   

19.
20.
Mesenchymal stem cells(MSCs) are adult stem cells harboring self-renewal and multilineage differentiation potential that are capable of differentiating into osteoblasts, adipocytes, or chondrocytes in vitro, and regulating the bone marrow microenvironment and adipose tissue remodeling in vivo. The process of fate determination is initiated by signaling molecules that drive MSCs into a specific lineage. Impairment of MSC fate determination leads to different bone and adipose tissue-related diseases, including aging, osteoporosis, and insulin resistance. Much progress has been made in recent years in discovering small molecules and their underlying mechanisms control the cell fate of MSCs both in vitro and in vivo. In this review, we summarize recent findings in applying small molecules to the trilineage commitment of MSCs, for instance, genistein,medicarpin, and icariin for the osteogenic cell fate commitment; isorhamnetin,risedronate, and arctigenin for pro-adipogenesis; and atractylenolides and dihydroartemisinin for chondrogenic fate determination. We highlight the underlying mechanisms, including direct regulation, epigenetic modification, and post-translational modification of signaling molecules in the AMPK, MAPK,Notch, PI3 K/AKT, Hedgehog signaling pathways etc. and discuss the small molecules that are currently being studied in clinical trials. The target-based manipulation of lineage-specific commitment by small molecules offers substantial insights into bone marrow microenvironment regulation, adipose tissue homeostasis, and therapeutic strategies for MSC-related diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号