首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biological invasions often transcend political boundaries, but the capacity of countries to prevent invasions varies. How this variation in biosecurity affects the invasion risks posed to the countries involved is unclear. We aimed to improve the understanding of how the biosecurity of a country influences that of its neighbours. We developed six scenarios that describe biological invasions in regions with contiguous countries. Using data from alien species databases, socio‐economic and biodiversity data and species distribution models, we determined where 86 of 100 of the world's worst invasive species are likely to invade and have a negative impact in the future. Information on the capacity of countries to prevent invasions was used to determine whether such invasions could be avoided. For the selected species, we predicted 2,523 discrete invasions, most of which would have significant negative impacts and are unlikely to be prevented. Of these invasions, approximately a third were predicted to spread from the country in which the species first establishes to neighbouring countries where they would cause significant negative impacts. Most of these invasions are unlikely to be prevented as the country of first establishment has a low capacity to prevent invasions or has little incentive to do so as there will be no impact in that country. Regional biosecurity is therefore essential to prevent future harmful biological invasions. In consequence, we propose that the need for increased regional co‐operation to combat biological invasions be incorporated in global biodiversity targets.  相似文献   

2.
Biological invasions often have contrasting consequences with reports of invasions decreasing diversity at small scales and facilitating diversity at large scales. Thus, previous literature has concluded that invasions have a fundamental spatial scale‐dependent relationship with diversity. Whether the scale‐dependent effects apply to vertebrate invaders is questionable because studies consistently report that vertebrate invasions produce different outcomes than plant or invertebrate invasions. Namely, vertebrate invasions generally have a larger effect size on species richness and vertebrate invaders commonly cause extinction, whereas extinctions are rare following invertebrate or plant invasions. In an agroecosystem invaded by a non‐native ungulate (i.e., feral swine, Sus scrofa), we monitored species richness of native vertebrates in forest fragments ranging across four orders of magnitude in area. We tested three predictions of the scale‐dependence hypothesis: (a) Vertebrate species richness would positively increase with area, (b) the species richness y‐intercept would be lower when invaded, and (c) the rate of native species accumulation with area would be steeper when invaded. Indeed, native vertebrate richness increased with area and the species richness was 26% lower than should be expected when the invasive ungulate was present. However, there was no evidence that the relationship was scale dependent. Our data indicate the scale‐dependent effect of biological invasions may not apply to vertebrate invasions.  相似文献   

3.
Current theories of plant invasion have been criticized for their limited heuristic and predictive value. We explore the heuristic and predictive potential of a model which explicitly simulates the mechanisms of plant invasion. The model, a spatially-explicit individual-based simulation, is applied to the invasion of pine trees (Pinus spp.; Pinaceae) in three vegetation types in the southern hemisphere. The model simulates factors which have been invoked as major determinants of invasive success: plant traits, environmental features and disturbance level. Results show that interactions between these determinants of invasive success are at least as important as the main effects. The complexity of invasions has promoted the belief that many factors must be invoked to explain invasions. This study shows that by incorporating interactions and mechanisms into our models we can potentially reduce the number of factors needed to predict plant invasions. The importance of interactions, however, means that predictions about invasions must be context-specific. The search for all-encompassing rules for invasions is therefore futile. The model presented here is of heuristic value since it improves our understanding of invasions, and of management value since it defines the data and models needed for predicting invasions.  相似文献   

4.
While exotic plant invasions are thought to lead to declines in native species, the long-term impacts of such invasions on community structure are poorly known. Furthermore, it is unknown how exotic plant invasions compare to invasions by native species. We present data from 40 yr of continuous vegetation sampling of 10 fields released from agriculture to examine the effects of invasions on species richness. The effects of both exotic and native species invasions on species richness were largely driven by variations among fields with most species not significantly affecting species richness. However, invasion and dominance by the exotics Agropyron repens, Lonicera japonica. Rosa multiflora. Trifolium pratense and the native Solidago canadensis were associated with declines in richness. Invasions by exotic and native species during old field succession have similar effects on species richness with dominance by species of either group being associated with loss of species richness. Exotic species invasions tended to have stronger effects on richness than native invasions. No evidence was found of residual effects of invasions because the impact of the invasion disappeared with the decline of the invading population. When pooled across species, heavy invasion by exotic species resulted in greater loss o species richness than invasion by native species. Studies of invasion that utilize multiple sites must account for variability among sites. In our study, had we no included field as a factor we would have incorrectly concluded that invasion consistently resulted in changes in species richness.  相似文献   

5.
Litchman E 《Ecology letters》2010,13(12):1560-1572
Although the number of studies on invasive plants and animals has risen exponentially, little is known about invasive microbes, especially non-pathogenic ones. Microbial invasions by viruses, bacteria, fungi and protists occur worldwide but are much harder to detect than invasions by macroorganisms. Invasive microbes have the potential to significantly alter community structure and ecosystem functioning in diverse terrestrial and aquatic ecosystems. Consequently, increased attention is needed on non-pathogenic invasive microbes, both free-living and symbiotic, and their impacts on communities and ecosystems. Major unknowns include the characteristics that make microbes invasive and properties of the resident communities and the environment that facilitate invasions. A comparison of microbial invasions with invasions of macroorganisms should provide valuable insights into general principles that apply to invasions across all domains of life and to taxon-specific invasion patterns. Invasive microbes appear to possess traits thought to be common in many invasive macroorganisms: high growth rate and resource utilization efficiency, and superior competitive abilities. Invading microorganisms are often similar to native species, but with enhanced performance traits, and tend to spread in lower diversity communities. Global change can exacerbate microbial invasions; therefore, they will likely increase in the future.  相似文献   

6.
植物外来种入侵及其对生态系统的影响   总被引:162,自引:16,他引:162  
彭少麟  向言词 《生态学报》1999,19(4):560-569
对植物外来种的入侵及生态系统的影响进行综述与分析,植物入侵多种因子的影响,可分为外因和内因两类,植物外来种对生态系统的影响主要体现在生产力,土壤营养,水分,干扰体制,群落的结构和动态等方面,在管理外来种时,需对外来种的特性和影响因子进行系统的观察研究,采用机械法,化学方法和生物控制法等综合办法控制植物的入侵,引进植物引来种时,要对引进种的行为特性进行了调查研究,注意其安全性。  相似文献   

7.
植物功能性状与外来植物入侵   总被引:4,自引:1,他引:4  
揭示影响外来植物入侵性的功能性状及其生态机制是入侵植物生态学的核心任务之一。本文综述了植物功能性状与外来植物入侵性的研究进展, 通过分析植物功能性状对外来植物入侵的贡献以及外来植物的不同入侵阶段对其功能性状的需求, 探讨植物功能性状与外来植物入侵的相关性及其入侵机理。迄今研究较多的影响外来植物入侵性的功能性状主要包括形态性状、生长性状、生理性状、繁殖性状、种子性状、克隆性状、表型可塑性和遗传变异等。这些功能性状对外来植物入侵的贡献随着入侵阶段的不同而变化。在传播到达阶段, 种子性状对入侵具有重要影响; 在定居建群阶段, 与植物抗逆性和适应性相关的生理性状和繁殖性状发挥主要作用; 在扩散入侵阶段, 克隆性状和影响植物竞争能力的生理性状对植物成功入侵具有重要贡献。由于植物入侵性是其功能性状和环境因素互作的结果, 且功能性状的作用随环境因素和入侵阶段不同而异, 因此, 结合外来植物入侵阶段, 并考虑功能性状与环境因子的互作, 是入侵生物学中植物功能性状研究的发展趋势。  相似文献   

8.
Biological invasions can have various impacts on the diversity of important microbial mutualists such as mycorrhizal fungi, but few studies have tested whether the effects of invasions on mycorrhizal diversity are consistent across spatial gradients. Furthermore, few of these studies have taken place in tropical ecosystems that experience an inordinate rate of invasions into native habitats. Here, we examined the effects of plant invasions dominated by non-native tree species on the diversity of arbuscular mycorrhizal (AM) fungi in Hawaii. To test the hypothesis that invasions result in consistent changes in AM fungal diversity across spatial gradients relative to native forest habitats, we sampled soil in paired native and invaded sites from three watersheds and used amplicon sequencing to characterize AM fungal communities. Whether our analyses considered phylogenetic relatedness or not, we found that invasions consistently increased the richness of AM fungi. However, AM fungal species composition was not related to invasion status of the vegetation nor local environment, but stratified by watershed. Our results suggest that while invasions can lead to an overall increase in the diversity of microbial mutualists, the effects of plant host identity or geographic structuring potentially outweigh those of invasive species in determining the community membership of AM fungi. Thus, host specificity and spatial factors such as dispersal need to be taken into consideration when examining the effects of biological invasions on symbiotic microbes.  相似文献   

9.
A general understanding of biological invasions will provide insights into fundamental ecological and evolutionary problems and contribute to more efficient and effective prediction, prevention and control of invasions. We review recent papers that have proposed conceptual frameworks for invasion biology. These papers offer important advances and signal a maturation of the field, but a broad synthesis is still lacking. Conceptual frameworks for invasion do not require invocation of unique concepts, but rather should reflect the unifying principles of ecology and evolutionary biology. A conceptual framework should incorporate multicausality, include interactions between causal factors and account for lags between various stages. We emphasize the centrality of demography in invasions, and distinguish between explaining three of the most important characteristics by which we recognize invasions: rapid local population increase, monocultures or community dominance, and range expansion. As a contribution towards developing a conceptual synthesis of invasions based on these criteria, we outline a framework that explicitly incorporates consideration of the fundamental ecological and evolutionary processes involved. The development of a more inclusive and mechanistic conceptual framework for invasion should facilitate quantitative and testable evaluation of causal factors, and can potentially lead to a better understanding of the biology of invasions.  相似文献   

10.
Most species introductions are not expected to result in invasion, and species that are invasive in one area are frequently not invasive in others. However, cases of introduced organisms that failed to invade are reported in many instances as anecdotes or are simply ignored. In this analysis, we aimed to find common characteristics between non‐invasive populations of known invasive species and evaluated how the study of failed invasions can contribute to research on biological invasions. We found intraspecific variation in invasion success and several recurring explanations for why non‐native species fail to invade; these included low propagule pressure, abiotic resistance, biotic resistance, genetic constraints and mutualist release. Furthermore, we identified key research topics where ignoring failed invasions could produce misleading results; these include studies on historical factors associated with invasions, distribution models of invasive species, the effect of species traits on invasiveness, genetic effects, biotic resistance and habitat invasibility. In conclusion, we found failed invasions can provide fundamental information on the relative importance of factors determining invasions and might be a key component of several research topics. Therefore, our analysis suggests that more specific and detailed studies on invasion failures are necessary.  相似文献   

11.
The history of conifers introduced earlier elsewhere in the southern hemisphere suggests that recent invasions in Argentina, Brazil, Chile and Uruguay are likely to increase in number and size. In South Africa, New Zealand and Australia, early ornamental introductions and small forestry plantations did not lead to large‐scale invasions, while subsequent large plantations were followed with a lag of about 20–30 years by troublesome invasions. Large‐scale conifer plantation forestry in South America began about 50–80 years later than in South Africa, Australia and New Zealand, while reports of invasions in South America lagged behind those in the latter nations by a century. Impacts of invading non‐native conifers outside South America are varied and include replacement of grassland and shrubland by conifer forest, alteration of fire and hydrological regimes, modification of soil nutrients, and changes in aboveground and belowground biotic communities. Several of these effects have already been detected in various parts of South America undergoing conifer invasion. The sheer amount of area planted in conifers is already very large in Chile and growing rapidly in Argentina and Brazil. This mass of reproductive trees, in turn, produces an enormous propagule pressure that may accelerate ongoing invasions and spark new ones at an increasing rate. Regulations to control conifer invasions, including measures to mitigate spread, were belatedly implemented in New Zealand and South Africa, as well as in certain Australian states, inspired by observations on invasions in those nations. Regulations in South America are weaker and piecemeal, but the existing research base on conifer invasions elsewhere could be useful in fashioning effective regulations in South America. Pressure from foreign customers in South Africa has led most companies there to seek certification through the Forestry Stewardship Council; a similar programme operates in Australia. Such an approach may be promising in South America.  相似文献   

12.
Biological invasions are a widespread and significant component of human-caused global environmental change. The extent of invasions of oceanic islands, and their consequences for native biological diversity, have long been recognized. However, invasions of continental regions also are substantial. For example, more than 2,000 species of alien plants are established in the continental United States. These invasions represent a human-caused breakdown of the regional distinctiveness of Earth's flora and fauna—a substantial global change in and of itself. Moreover, there are well- documented examples of invading species that degrade human health and wealth, alter the structure and functioning of otherwise undisturbed ecosystems, and/or threaten native biological diversity. Invasions also interact synergistically with other components of global change. notably land use change. People and institutions working to understand, prevent, and control invasions are carrying out some of the most important—and potentially most effective—work on global environmental change.  相似文献   

13.
Predicting Biological Invasions   总被引:1,自引:0,他引:1  
There are various approaches to explain the mechanisms of biological invasions. It is possible (1) to focus on the characteristics of invading species and (2) on those of the ecosystems invaded, (3) to investigate the relationship between these two factors (key–lock approach), or (4) to differentiate the invasion process in time. Each of these approaches may serve to improve the understanding of some aspects of biological invasions, and each of them is in some way suitable for the purpose of predicting invasions. We discuss the usefulness and the limitations of these approaches, focusing on case studies from central Europe. An example of the fourth approach, a model of steps and stages of plant invasions that describes the invasion process in greater detail, illustrates some general limitations in predicting biological invasions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Biological invasions depend in part on the resistance of native communities. Meta‐analyses of terrestrial experiments demonstrate that native primary producers and herbivores generally resist invasions of primary producers, and that resistance through competition strengthens with native producer diversity. To test the generality of these findings, we conducted a meta‐analysis of marine experiments. We found that native marine producers generally failed to resist producer invasions through competition unless the native community was diverse, and this diversity effect was weaker in marine than in terrestrial systems. In contrast, native consumers equally resisted invasive producers in both ecosystems. Most marine experiments, however, tested invasive consumers and these invasions were resisted more strongly than were producer invasions. Given these differences between ecosystems and between marine trophic levels, we used a model‐selection approach to assess if factors other than the resistance mechanism (i.e. competition vs. consumption) are more important for predicting marine biotic resistance. These results suggest that understanding marine biotic resistance depends on latitude, habitat and invader taxon, in addition to distinguishing between competition with and consumption by native species. By examining biotic resistance within and across ecosystems, our work provides a more complete understanding of the factors that underlie biological invasions.  相似文献   

15.
Ecological and evolutionary insights from species invasions   总被引:14,自引:0,他引:14  
Species invasions provide numerous unplanned and frequently, but imperfectly, replicated experiments that can be used to better understand the natural world. Classic studies by Darwin, Grinnell, Elton and others on these species-invasion experiments provided invaluable insights for ecology and evolutionary biology. Recent studies of invasions have resulted in additional insights, six of which we discuss here; these insights highlight the utility of using exotic species as 'model organisms'. We also discuss a nascent hypothesis that might provide a more general, predictive understanding of invasions and community assembly. Finally, we emphasize how the study of invasions can help to inform our understanding of applied problems, such as extinction, ecosystem function and the response of species to climate change.  相似文献   

16.
Land use change and biological invasions collectively threaten biodiversity. Yet, few studies have addressed how altering the landscape structure and nutrient supply can promote biological invasions and particularly invasive spread (the spread of an invader from the place of introduction), or asked whether and how these factors interact with biotic interactions and invader properties. We here bridge this knowledge gap by providing a holistic network-based approach. Our approach combines a trophic network model with a spatial network model allowing us to test which combinations of abiotic and biotic factors can facilitate invasions and in particular invasive spread in food webs. We numerically simulated 6300 single-species invasions in clustered and random landscapes at different levels of nutrient supply. In total, our simulation experiment yielded 69% successful invasions – 71% in clustered landscapes and 66% in random landscapes, with the proportion of successful invasions increasing with nutrient supply. However, invasive spread was generally higher in random than in clustered landscapes. The latter can facilitate invasive spread within a habitat cluster, but prevent invasive spread between clusters. Low nutrient levels generally prevented the establishment of invasive species and their subsequent spread. However, successful invaders could have more severe impacts as they contribute more to total biomass density and species richness under such conditions. Good dispersal abilities drive the broad-scale spread of invasive species in fragmented landscapes. Our approach makes an important contribution towards a better understanding of what combination of landscape and invader properties can facilitate or prevent invasive spread in natural ecosystems. This should allow ecologists to more effectively predict and manage biological invasions.  相似文献   

17.
Biological Invasions - Biological invasions are one of the top drivers of the ongoing biodiversity crisis. An underestimated consequence of invasions is the enormity of their economic impacts....  相似文献   

18.
Roles of parasites in animal invasions   总被引:1,自引:0,他引:1  
Biological invasions are global threats to biodiversity and parasites might play a role in determining invasion outcomes. Transmission of parasites from invading to native species can occur, aiding the invasion process, whilst the 'release' of invaders from parasites can also facilitate invasions. Parasites might also have indirect effects on the outcomes of invasions by mediating a range of competitive and predatory interactions among native and invading species. Although pathogen outbreaks can cause catastrophic species loss with knock-on effects for community structure, it is less clear what impact persistent, sub-lethal parasitism has on native-invader interactions and community structure. Here, we show that the influence of parasitism on the outcomes of animal invasions is more subtle and wide ranging than has been previously realized.  相似文献   

19.
Zhu  Xiaomin  Liu  Mei  Kou  Yongping  Liu  Dongyan  Liu  Qing  Zhang  Ziliang  Jiang  Zheng  Yin  Huajun 《Plant and Soil》2020,454(1-2):285-297
Plant and Soil - Biological invasions have historically been addressed mostly from an aboveground perspective, so little is known about the impacts of belowground invasions. We studied the impact...  相似文献   

20.
Parma  S. 《Hydrobiologia》2003,491(1-3):1-8
Historical and modern migrations and dispersal of most marine organisms (intertidal, benthic, meiofaunal, planktonic, nektonic, or neustonic) are classically interpreted in terms of their natural dispersal potential. Exceptions are introduced species, largely recognized since the 19th century, known to have been transported by human activities. However, humans were transporting species along coastlines and across oceans for millennia and centuries prior to the advent of the first biological surveys. Thus, the presumptive natural distributions of many species may be questioned. Reviewed here are some basic concepts about invasions of non-native species. Human activities move species isolated in time and space from other oceans or continents, and thus human-mediated transport does not simply speed up natural dispersal processes. Both past and modern-day invasions are often overlooked, leading to an underestimation of the scale of invasion diversity and impact. Because vectors, donor regions, and recipient regions change over time, invasions will continue along long-standing but un-managed corridors. The impact of most invasions has never been studied and, therefore, it is not possible to conclude that most invasions have no impact, nor is it generally possible to say that invasions have become `integrated' into a community or ecosystem in ecological time. Finally, invasions in the ocean are not limited to harbours and ports, but are found in a wide variety of marine habitats, ranging from the open ocean continental shelf to exposed rocky shores. The existence of human-mediated vectors has created extraordinary challenges to our understanding and interpretation of the ecology, biogeography, evolutionary biology, and conservation biology of marine communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号