首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Theory predicts that species diversity can enhance stability of community‐level biomass while simultaneously decreasing population‐level stability. Enrichment can theoretically destabilize communities but effects may become weaker with increasing diversity because of the inclusion of consumer‐resistant prey. Few experiments using direct manipulations of species diversity have tested these predictions. We used laboratory‐based aquatic food webs to examine the effects of species composition, diversity and enrichment on temporal variability of population‐ and community‐level biomass. We found weak effects of enrichment on population‐ and community‐level stability. However, diversity enhanced community‐level stability while species composition had no influence. In contrast, composition effects outweighed diversity effects when stability was measured at the population level. We found no negative effects of diversity on population‐level stability, in opposition to theory. Our results indicate that diversity can enhance stability in multitrophic systems, but effects vary with the scale of biological organization at which stability is measured.  相似文献   

2.
Two major foci of ecological research involve reciprocal views of the relationship between biodiversity and disturbance: disturbance determines community diversity or diversity determines realized disturbance severity. Here, we present an initial attempt to synthesize these two approaches in order to understand whether feedbacks occur, and what their effects on patterns of diversity might be. Our review of published experiments shows that (i) disturbance severity can be both a cause and a consequence of local diversity in a wide range of ecosystems and (ii) shapes of the unidirectional relationships between diversity and disturbance can be quite variable. To explore how feedbacks between diversity and disturbance might operate to alter expected patterns of diversity in nature, we develop and then evaluate a conceptual model that decomposes the relationships into component parts, considering sequentially the effect of diversity on disturbance severity, and the effect of realized disturbance on diversity loss, subsequent recruitment, and competitive exclusion. Our model suggests that feedbacks can increase mean values of richness, decrease variability, and alter the patterns of correlation between diversity and disturbance in nature. We close by offering ideas for future research to help fill gaps in our understanding of reciprocal relationships among ecological variables like diversity and disturbance.  相似文献   

3.
Genetic diversity provides the basic substrate for evolution, yet few studies assess the impacts of global climate change (GCC) on intraspecific genetic variation. In this review, we highlight the importance of incorporating neutral and non‐neutral genetic diversity when assessing the impacts of GCC, for example, in studies that aim to predict the future distribution and fate of a species or ecological community. Specifically, we address the following questions: Why study the effects of GCC on intraspecific genetic diversity? How does GCC affect genetic diversity? How is the effect of GCC on genetic diversity currently studied? Where is potential for future research? For each of these questions, we provide a general background and highlight case studies across the animal, plant and microbial kingdoms. We further discuss how cryptic diversity can affect GCC assessments, how genetic diversity can be integrated into studies that aim to predict species' responses on GCC and how conservation efforts related to GCC can incorporate and profit from inclusion of genetic diversity assessments. We argue that studying the fate of intraspecifc genetic diversity is an indispensable and logical venture if we are to fully understand the consequences of GCC on biodiversity on all levels.  相似文献   

4.
The influence of landscape pattern on plant diversity has strong scale-dependent effects. However, the relationship is still unclear for sandy land, which covers more than one-third of the world’s land mass. Aiming at exploring such scale-dependent effects in sandy land, we conducted a case study in Hunshandak Sandland, northern China. Principal component analysis (PCA) and Redundancy Analysis (RDA) was used to disentangle the relations between landscape pattern and alpha and beta plant diversity. Our results show that landscape pattern has an important influence on plant diversity, however, there existed scale effects. Landscape diversity enhanced the alpha diversity, conversely, reduced the beta diversity for all scales. PSSD (Patch Size Standard Deviation) positively related with alpha diversity whilst negatively related with beta diversity on moderate and large spatial scales, same as LPI (Largest Patch Index) on moderate scales. Shape complexity of patches can slightly increase both alpha and beta diversity at large scales. The adjustment of landscape pattern based on different spatial scales can enhance plant diversity. It is useful to improve plant diversity conservation in sandy land.  相似文献   

5.
Although predator effects on the number of locally coexisting species are well understood, there are few formal predictions of how these local predator effects influence patterns of prey diversity at larger spatial scales. Building on the theory of island biogeography, we develop a simple model that describes how predators can alter the scaling of diversity in prey metacommunities and compares the effects of generalist and specialist predators on regional prey diversity. Generalist predators, which consume prey randomly with respect to species identity, are predicted to reduce α‐diversity and increase β‐diversity thereby maintaining regional diversity (γ‐diversity). Alternatively, specialist predators, which filter out prey species intolerant of predators, are predicted to reduce bothα‐diversity andβ‐diversity by causing the same prey species to be extirpated in each locality, resulting in regional prey species extinctions and lower γ‐diversity. These distinct effects of generalist and specialist predators on prey diversity at different spatial scales are uniquely shaped by the extent of predation within those metacommunities. Overall, our model results make general predictions for how different types of predators can differentially affect prey diversity across spatial scales, allowing a more complete understanding of the possible implications of predator eradications or introductions for biodiversity.  相似文献   

6.
全球变化对土壤动物多样性的影   总被引:1,自引:0,他引:1  
吴廷娟 《生态学杂志》2013,24(2):581-588
陆地生态系统由地上和地下两部分组成,二者相互作用共同影响生态系统过程和功能.土壤动物在生物地球化学循环方面起着重要作用.随着人们对土壤动物在生态系统过程中重要性的认识,越来越多的研究表明全球变化对土壤动物多样性产生深刻影响.土地利用方式的改变、温度增加和降雨格局的改变能直接影响土壤动物多样性.CO2浓度和氮沉降的增加主要通过影响植物群落结构、组成和化学成分对土壤动物多样性产生间接影响.不同环境因子之间又能相互作用共同影响土壤动物多样性.了解全球变化背景下不同驱动因子及其交互作用对土壤动物多样性的影响,有助于更好地预测未来土壤动物多样性及相关生态学过程的变化.  相似文献   

7.
施秀珍  王建青  黄志群  贺纪正 《生态学报》2022,42(15):6092-6102
森林是陆地生态系统的重要组成部分,其巨大的生产力和生态服务功能对人类的生存和发展至关重要。森林树种多样性增加能够显著提高森林生产力,关于树种多样性如何影响地下生物多样性及生态功能逐渐受到国内外学者的广泛关注。从土壤微生物及其介导的元素生物地球化学循环这一视角出发,综述了树种多样性对土壤细菌和真菌多样性、群落结构及功能的影响,提出需要进一步深入研究的方向。总体来说,树种多样性有利于增加土壤细菌生物量和多样性,是预测病原性真菌和菌根真菌多样性及群落结构的重要生物因子。树种多样性能增加土壤有机碳储量,增强森林土壤的甲烷氧化能力,并提高土壤磷周转速率及有效磷含量。关于树种多样性对森林土壤氮循环的影响需考虑多样性假说和质量比假说的相对贡献。今后应加强树种多样性对多个营养级之间相互作用的研究;关注树种多样性对生态系统多功能的影响;加强学科交叉,引入微生物种群动态模型和气候模型等模型预测方法,研究树种多样性对全球气候变化的应对机制,以期促进地上植物多样性与地下生态系统功能关系的研究,增强森林生态系统应对未来全球环境变化的能力。  相似文献   

8.
光谱多样性是一种基于植物反射电磁辐射光谱的生物多样性维度, 反映了不同波段光谱反射率在植物种内与种间个体之间的变异程度。由于植物反射光谱特征的差异可以综合地反映植物间生化组分和形态特征的差异, 光谱多样性成为植物多样性监测和评估的重要技术手段。该文介绍了光谱多样性的概念及其生态学意义, 比对了多源、多平台光谱数据各自的技术优势和局限性, 并概述了基于光谱多样性的植物多样性监测和评估方法及其应用, 探讨了光谱多样性整合不同维度生物多样性的能力, 展望了光谱多样性在生物多样性研究中的发展前景。光谱多样性能在多空间尺度服务于植物多样性的监测与评估, 特别是依托基于无人机技术的近地面遥感, 可以实现精细尺度植物多样性的监测与评估, 在生物多样性的保护和管理中具有广阔的应用前景。  相似文献   

9.
Erin A. Mordecai 《Oikos》2015,124(4):414-420
Environmental variability can promote species diversity when species respond differently to environmental conditions, via the storage effect. Pathogens, predators and other shared consumers can also facilitate coexistence when they differentially limit common species. However, it remains unclear how environmental variation and consumers interact to determine species diversity. Here, I use a model based on California annual grassland plants to show that a generalist pathogen with no host specificity can enhance the positive effect of environmental variability on diversity. The model predicts that pathogens can promote diversity by increasing the covariance between the environment and competition, enhancing the storage effect. However, pathogen impacts depend on life history. Pathogens that infect germinating seeds or plants tend to increase the storage effect, whereas those that infect dormant seeds can undermine the storage effect by eliminating population buffering during unfavorable years. These results suggest that pathogens may mediate plant responses to environmental variability and change, and in doing so may maintain diversity.  相似文献   

10.
丛枝菌根真菌最新分类系统与物种多样性研究概况   总被引:3,自引:0,他引:3  
丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)是自然界分布最广泛的一类植物共生真菌,能够与大部分高等植物的根系形成共生关系.由于它们在农林、环境等领域的巨大应用潜力,国内外关于AMF物种多样性的研究一直受到较高的关注.然而,AMF专性共生的特征以及研究方法不够理想等因素长期阻碍了AMF物种多样性的研究进展.近年来,研究方法的改进与新技术的应用为AMF物种多样性的研究提供了极好的机遇.简述了AMF的最新分类系统及全球物种数量、AMF物种多样性影响因素以及AMF物种多样性研究方法三个方面的研究进展,并分析了今后在AMF物种多样性相关领域值得关注的研究方向.  相似文献   

11.
Plant diversity can affect ecological processes such as competition and herbivory, and these ecological processes can act as drivers of evolutionary change. However, surprisingly little is known about how ecological variation in plant diversity can alter selective regimes on members of the community. Here, we examine how plant diversity at two different scales (genotypic and species diversity) impacts natural selection on a focal plant species, the common evening primrose (Oenothera biennis). Because competition is frequently relaxed in both genotypically and species rich plant communities, we hypothesized that increasing diversity would weaken selection on competitive ability. Changes in plant diversity can also affect associated arthropod communities. Therefore, we hypothesized that diversity would alter selection on plant traits mediating these interactions, such as herbivory related traits. We grew 24 focal O. biennis genotypes within four different neighbourhoods: genotypic monocultures or polycultures of O. biennis, and species monocultures or polycultures of old-field species that commonly co-occur with O. biennis. We then measured genotypic selection on nine plant traits known to be ecologically important for competition and herbivory. Focal O. biennis plants were smaller, flowered for shorter periods of time, had lower fitness, and experienced greater attack from specialist predispersal seed predators when grown with conspecifics versus heterospecifics. While neither conspecific nor heterospecific diversity altered trait means, both types of diversity altered the strength of selection on focal O. biennis plants. Specifically, selection on plant biomass was stronger in conspecific monocultures versus polycultures, but weaker in heterospecific monocultures versus polycultures. We found no evidence of selection on plant traits that mediate insect interactions, despite differences in arthropod communities on plants surrounded by conspecifics versus heterospecifics. Our data demonstrate that plant genotypic and species diversity can act as agents of natural selection, potentially driving evolutionary changes in plant communities.  相似文献   

12.
Spatial structure has been identified as a major contributor to the maintenance of diversity. Here, we show that the impact of spatial structure on diversity is strongly affected by the ecological mechanisms maintaining diversity. In well-mixed, unstructured environments, microbial populations can diversify by production of metabolites during growth, providing additional resources for novel specialists. By contrast, spatially structured environments potentially limit such facilitation due to reduced metabolite diffusion. Using replicate microcosms containing the bacterium Escherichia coli, we predicted the loss of diversity during an environmental shift from a spatially unstructured environment to spatially structured conditions. Although spatial structure is frequently observed to be a major promoter of diversity, our results indicate that it can also have negative impacts on diversity.  相似文献   

13.
生物多样性和均匀度显著性的随机化检验及计算软件   总被引:6,自引:0,他引:6  
多样性指数和均匀度以其简单易用而被广泛应用于群落生物学和生物多样性等研究中,然而由于缺乏合适的统计检验方法等原因,其分析的可信性往往较低,因而限制了其应用。鉴于生物多样性研究中广泛应用主观和直接的比较不,有必要建立和使用较为严格的多样性统计检验。本研究建立和应用了如下随机化检验方法:单群落多样性指数和均匀度的显著性检验,单群落多样性指数和均匀度的置认区间,群落间多群样和均匀度的差异显著性检验。随机化方法已被成功地应用于群落生态学研究,其原理是:随机排序某一向量中的元素,或随机交换两向量中的对应元素。计算该随机化数据的多样性和均匀度,重复该过程多次,统计和计算显著性检验的p值,由向量中的对应元素。计算该随机化数据的多样性和均匀度,重复该过程多次,统计和显著性检验的p值。由此可确定多样性和差异的统计显著性。同时,研制了相应的Internet计算软件BiodiverisytTest。该软件由7个Java类和1个HTML文件组成,可运行于多种操作系统和网络浏览器上,可读取多种类型的ODBC数据库文件如Access,Excel,FoxPro,Dbase等。该软件中包括Shannon-Wiener多样性指数,Simpson多样性指数,McIntosh多样性指数,Berger-Parker多样性指数,Hrlbert多样性指数以及Brillouin多样性指数。基于Shannon-Wiener多样性指数和Berger-Parker多样性指数,用BiodiversityTest软件对水稻田节肢动物群落多样性(15个地点,17个功能群,125个节肢动物种)进行了比较和分析。结果显示,两组结果可较好地反映水稻节肢动物群落多样性的差异显著性,这些检验方法可有效地反映多样性指数和均匀度的变化。与水稻田节肢动物群落间多样性的直接比较法相比,该随机化检验方法获得更客观的结果。本算法与软件有助于改进生物多样性研究中使用的某些不甚严格的分析方法,为随机化检验方法在生物多样性研究中的进一步应用提供了一种可用的工具。  相似文献   

14.
Studies of marine nearshore hard substrates have demonstrated that consumers and abiotic disturbances can remove biomass, clearing space for species that are competitively subordinate and subsequently increasing diversity. However, studies often examine the impact of these space-opening forces on diversity in isolation from other potentially interacting factors. In marine systems, space can be closed by recruitment decoupled from local populations. Therefore, we investigated how recruitment influences the impacts of consumers on diversity with a meta-analysis of 27 experiments of community development involving sessile species on marine hard substrates. These studies allowed quantification of recruitment rates, consumer pressure, and species richness of primary space occupants. This meta-analysis demonstrated that consumers generally increase diversity at high levels of recruitment but decrease diversity at low levels of recruitment. Therefore, species diversity of sessile species is controlled by the interaction between forces that open (predation and herbivory) and close (recruitment) space.  相似文献   

15.
Although recent studies have revealed that the relationship between diversity and environmental heterogeneity is not always positive, as classical niche theory predicts, scientists have had difficulty interpreting these results from an ecological perspective. We propose a new concept—microfragmentation—to explain how small-scale heterogeneity can have neutral or even negative effect on species diversity. We define microfragmentation as a community level process of splitting habitat into a more heterogeneous environment that can have non-positive effects on the diversity through habitat loss and subsequent isolation. We provide support for the microfragmentation concept with results from spatially explicit heterogeneity–diversity model simulations, in which varying sets of species (with different ratios of specialist and generalist species) were modeled at different levels of configurational heterogeneity (meaning that only the habitat structure was changed, not its composition). Our results indicate that environmental heterogeneity can affect community diversity in the same way as fragmentation at the landscape level. Although generalist species might not be seriously affected by microfragmentation, the persistence of specialist species can be seriously disturbed by small-scale patchiness. The microfragmentation concept provides new insight into community level diversity dynamics and can influence conservation and management strategies.  相似文献   

16.
Biological diversity can be measured using various metrics, but existing knowledge of spatial patterns of diversity is largely based on species counts. There is increasing evidence that trends in species richness might not match trends in other biodiversity metrics, such as morphological diversity. Here, we use data from a large group of Indo-Pacific gastropods (family Strombidae) to show that the species richness of a region is a poor predictor of the morphological diversity present there. Areas with only a few species can harbour an impressive array of morphologies and, conversely, morphological diversity in the most species-rich regions is no higher than in regions with half their taxonomic diversity. Biological diversity in the Pacific is highly threatened by human activity and our results indicate that, in addition to species richness, morphological diversity metrics need to be incorporated into conservation decisions.  相似文献   

17.
Recent studies suggest the necessity of understanding the interactive effects of predation and productivity on species coexistence and prey diversity. Models predict that coexistence of prey species with different competitive abilities can be achieved if inferior resource competitors are less susceptible to predation and if productivity and/or predation pressure are at intermediate levels. Hence, predator effects on prey diversity are predicted to be highly context dependent: enhancing diversity from low to intermediate levels of productivity or predation and reducing diversity of prey at high levels of productivity or predation. While several studies have examined the interactive effects of herbivory and productivity on primary producer diversity, experimental studies of such effects in predator‐prey systems are rare. We tested these predictions using an aquatic field mesocosm experiment in which initial density of the zooplankton predator Notonecta undulata and productivity were manipulated to test their interactive effects on diversity of seven zooplankton, cladoceran species that were common in surrounding ponds. Two productivity levels were imposed via phosphorus enrichment at levels comparable to low and intermediate levels found within neighboring natural ponds. We used open systems to allow for natural dispersal and behaviorally‐mediated numerical responses by the flight‐capable predator. Effects of predators on zooplankton diversity depended on productivity level. At low and high productivity, prey species richness declined while at high productivity it showed a unimodal relationship with increasing the predator density. Effects of treatments were weaker when using Pielou's evenness index or the inverse Simpson index as measures of prey diversity. Our findings are generally consistent with model predictions in which predators can facilitate prey coexistence and diversity at intermediate levels of productivity and predation intensity. Our work also shows that the functional form of the relationship between prey diversity and predation intensity can be complex and highly dependent on environmental context.  相似文献   

18.
Intraspecific diversity can influence the structure of associated communities, though whether litter-based and foliage-based arthropod communities respond to intraspecific diversity in similar ways remains unclear. In this study, we compared the effects of host-plant genotype and genotypic diversity of the perennial plant, Solidago altissima, on the arthropod community associated with living plant tissue (foliage-based community) and microarthropods associated with leaf litter (litter-based community). We found that variation among host-plant genotypes had strong effects on the diversity and composition of foliage-based arthropods, but only weak effects on litter-based microarthropods. Furthermore, host-plant genotypic diversity was positively related to the abundance and diversity of foliage-based arthropods, and within the herbivore and predator trophic levels. In contrast, there were minimal effects of plant genotypic diversity on litter-based microarthropods in any trophic level. Our study illustrates that incorporating communities associated with living foliage and senesced litter into studies of community genetics can lead to very different conclusions about the importance of intraspecific diversity than when only foliage-based community responses are considered in isolation. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
Apex predators and plant resources are both critical for maintaining diversity in biotic communities, but the indirect (‘cascading’) effects of top‐down and bottom‐up forces on diversity at different trophic levels are not well resolved in terrestrial systems. Manipulations of predators or resources can cause direct changes of diversity at one trophic level, which in turn can affect diversity at other trophic levels. The indirect diversity effects of resource and consumer variation should be strongest in aquatic systems, moderate in terrestrial systems, and weakest in decomposer food webs. We measured effects of top predators and plant resources on the diversity of endophytic animals in an understorey shrub Piper cenocladum (Piperaceae). Predators and resource availability had significant direct and indirect effects on the diversity of the endophytic animal community, but the effects were not interactive, nor were they consistent between living vs. detrital food webs. The addition of fourth trophic level beetle predators increased diversity of consumers supported by living plant tissue, whereas balanced plant resources (light and nutrients) increased the diversity of primary through tertiary consumers in the detrital resources food web. These results support the hypotheses that top‐down and bottom‐up diversity cascades occur in terrestrial systems, and that diversity is affected by different factors in living vs. detrital food webs.  相似文献   

20.
Genomics provides new opportunities for conservation genetics. Conservation genetics in livestock is based on estimating diversity by pedigree relatedness and managing diversity by choosing those animals that maximize genetic diversity. Animals can be chosen as parents for the next generation, as donors of material to a gene bank, or as breeds for targeting conservation efforts. Genomics provides opportunities to estimate diversity for specific parts of the genome, such as neutral and adaptive diversity and genetic diversity underlying specific traits. This enables us to choose candidates for conservation based on specific genetic diversity (e.g. diversity of traits or adaptive diversity) or to monitor the loss of diversity without conservation. In wild animals direct genetic management, by choosing candidates for conservation as in livestock, is generally not practiced. With dense marker maps opportunities exist for monitoring relatedness and genetic diversity in wild populations, thus enabling a more active management of diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号