首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anorexia nervosa (AN) is a psychiatric illness characterized by excessively restricted caloric intake and abnormally high levels of physical activity. A challenging illness to treat, due to the lack of understanding of the underlying neurobiology, AN has the highest mortality rate among psychiatric illnesses. To address this need, neuroscientists are using an animal model to study how neural circuits may contribute toward vulnerability to AN and may be affected by AN. Activity-based anorexia (ABA) is a bio-behavioral phenomenon described in rodents that models the key symptoms of anorexia nervosa. When rodents with free access to voluntary exercise on a running wheel experience food restriction, they become hyperactive – running more than animals with free access to food. Here, we describe the procedures by which ABA is induced in adolescent female C57BL/6 mice. On postnatal day 36 (P36), the animal is housed with access to voluntary exercise on a running wheel. After 4 days of acclimation to the running wheel, on P40, all food is removed from the cage. For the next 3 days, food is returned to the cage (allowing animals free food access) for 2 hr daily. After the fourth day of food restriction, free access to food is returned and the running wheel is removed from the cage to allow the animals to recover. Continuous multi-day analysis of running wheel activity shows that mice become hyperactive within 24 hr following the onset of food restriction. The mice run even during the limited time during which they have access to food. Additionally, the circadian pattern of wheel running becomes disrupted by the experience of food restriction. We have been able to correlate neurobiological changes with various aspects of the animals’ wheel running behavior to implicate particular brain regions and neurochemical changes with resilience and vulnerability to food-restriction induced hyperactivity.  相似文献   

2.
Physical cage enrichment—exercise devices for rodents in the laboratory—often includes running wheels. This study compared responses of mice in enriched physical and social conditions and in standard social conditions to wheel running, individual housing, and open-field test. The study divided into 6 groups, 48 female BALB/c mice group housed in enriched and standard conditions. On alternate days, the study exposed 2 groups to individual running wheel cages. It intermittently separated from their cage mates and housed individually 2 groups with no running wheels; 2 control groups remained in enriched or standard condition cages. There were no significant differences between enriched and standard group housed mice in alternate days' wheel running. Over time, enriched, group housed mice ran less. Both groups responded similarly to individual housing. In open-field test, mice exposed to individual housing without running wheel moved more and faster than wheel running and home cage control mice. They have lower body weights than group housed and wheel running mice. Intermittent withdrawal of individual housing affects the animals more than other commodities. Wheel running normalizes some effects of intermittent separation from the enriched, social home cage.  相似文献   

3.
Physical cage enrichment—exercise devices for rodents in the laboratory—often includes running wheels. This study compared responses of mice in enriched physical and social conditions and in standard social conditions to wheel running, individual housing, and open-field test. The study divided into 6 groups, 48 female BALB/c mice group housed in enriched and standard conditions. On alternate days, the study exposed 2 groups to individual running wheel cages. It intermittently separated from their cage mates and housed individually 2 groups with no running wheels; 2 control groups remained in enriched or standard condition cages. There were no significant differences between enriched and standard group housed mice in alternate days' wheel running. Over time, enriched, group housed mice ran less. Both groups responded similarly to individual housing. In open-field test, mice exposed to individual housing without running wheel moved more and faster than wheel running and home cage control mice. They have lower body weights than group housed and wheel running mice. Intermittent withdrawal of individual housing affects the animals more than other commodities. Wheel running normalizes some effects of intermittent separation from the enriched, social home cage.  相似文献   

4.
High and Low Activity strains of mice (displaying low and high anxiety-like behavior, respectively) with 7.8–20 fold differences in open-field activity were selected and subsequently inbred to use as a genetic model for studying anxiety-like behavior in mice (DeFries et al., 1978, Behavior Genetics, 8:3-13). These strains exhibited differences in other anxiety-related behaviors as assessed using the light–dark box, elevated plus-maze, mirror chamber, and elevated square-maze tests (Henderson et al., 2004, Behavior Genetics, 34: 267-293). The purpose of these experiments was three-fold. First, we repeated a 6-day behavioral battery using updated equipment and software to confirm the extreme differences in anxiety-like behaviors. Second, we tested novel object exploration, a measure of anxiety-like behavior that does not rely heavily on locomotion. Third, we conducted a home cage wheel running experiment to determine whether these strains differ in locomotor activity in a familiar, home cage environment. Our behavioral test battery confirmed extreme differences in multiple measures of anxiety-like behaviors. Furthermore, the novel object test demonstrated that the High Activity mice exhibited decreased anxiety-like behaviors (increased nose pokes) compared to Low Activity mice. Finally, male Low Activity mice ran nearly twice as far each day on running wheels compared to High Activity mice, while female High and Low Activity mice did not differ in wheel running. These results support the idea that the behavioral differences between High and Low Activity mice are likely to be due to anxiety-related factors and not simply generalized differences in locomotor activity.  相似文献   

5.
Stereotyped motor behaviors are a common consequence of environmental restriction in a wide variety of species. Although environmental enrichment has been shown to substantially reduce stereotypy levels, the various components of enrichment have not been evaluated independently to determine which is responsible for this effect. Exercise, particularly voluntary wheel running, is a promising candidate based on several lines of behavioral and neurobiological evidence. To test the hypothesis that access to wheel running will reduce stereotyped motor behavior, we reared deer mice from weaning with continuous access to either a functional running wheel or a locked wheel. We assessed running behavior throughout this time period and stereotypy levels in a test context at 30 and 45 days post-weaning. We found that exercise did not significantly affect stereotypy level nor was there an association between wheel running and stereotypy. Thus, exercise alone, unlike environmental enrichment, does not prevent the development of stereotypy. These results have important implications for animal welfare.  相似文献   

6.
Adult male rats given ad lib access to food and a running wheel show an initial feeding and weight suppression. Over 6-10 days feeding recovers, but body weight remains low. It is not clear which effect is primary, the wheel-induced feeding or weight change. To test this, rats were first restricted to 15 g of food a day for 8 or 16 days to reduce their weight relative to control non-restricted rats. They were then returned to ad lib feeding and half the restricted and non-restricted control rats were introduced to the wheel either immediately (Experiment 1) or 4 days later (Experiment 2). Food intake, body weight, and wheel running were monitored throughout the experiments. At the return to ad lib feeding, prior food restriction elevated feeding. Both immediate and delayed wheel access suppressed feeding in both groups of wheel access rats compared to the appropriate control rats. Feeding history did not have a significant effect on wheel running. The wheel-induced reductions in feeding from baseline were similar in the weight reduced and normal weight animals suggesting that prior weight restriction did not prevent the onset of the wheel-induced feeding suppression. It is therefore suggested that the feeding suppression is not driven by a reduced weight set point.  相似文献   

7.
Animals were given five cycles of an activity anorexia (AA) procedure in order to determine the effect of additional experience on eating, running, and weight loss. Female Sprague-Dawley rats were given a 1h meal and allowed access to a running wheel for the remainder of each day. Upon reaching 75% of free-feeding body weight, each animal was denied wheel access and given ad libitum food until it regained the lost weight. Then, food was again restricted and wheel access provided. Sedentary control animals were placed on the restricted feeding schedule for the median number of days experimental animals required to reach weight loss criterion. Experimental animals showed adaptation by increasing food consumption and decreasing the rate of weight loss despite an increase in running across cycles. Additionally, the distribution of running shifted gradually so that during the later cycles, much of the running occurred in the hours just before feeding. The results support the hypothesis that running interferes with adaptation to the restricted feeding schedule and also that the marked increase in anticipatory behavior during the later cycles is primarily responsible for the maintenance of AA.  相似文献   

8.
The aim of the study was to obtain base values of climbing behaviour in mice maintained under standardized conditions in Makrolon-cages. Therefore three adult male mice each of the inbred strains BALB/cJ and C57BL/6J were kept separately and two C57BL/6J females as a group in Makrolon-cages type III. In addition, the same BALB/c mice were later kept in a cage with an eightfold floor area. Behavioural observations were carried out by video technique using a light-sensitive camera and a time-lapse recorder. Locomotor activity on the cage floor and climbing on the top of the cage were measured over a period of 48 h for each animal. The duration of locomotion on the ground ranged from 24-65 min/day, climbing between 49-122 (males) and 159 min/day (females) respectively. Climbing showed a more pronounced daily periodicity than locomotion, especially in the case of the BALB/cJ strain, where the average duration of climbing was about 28 min/h during the first hour after light off. In the mouse, climbing is obviously a regular component of activity, which deserves not only attention in the discussion concerning the needs of laboratory animals, but also in measurements of locomotor activity.  相似文献   

9.
CCK acts peripherally as a satiating peptide released during meals in response to lipid feeding and centrally functions in the modulation of feeding, exploratory, and memory activities. The present study determined metabolic parameters, food intake, anxiety-like behaviors, and cognitive function in mice lacking the CCK gene. We studied intestinal fat absorption, body composition, and food intake of CCK knockout (CCK-KO) mice by using the noninvasive measurement of intestinal fat absorption along with quantitative magnetic resonance (QMR) imaging and the DietMax system, respectively. Additionally, exploratory and memory capacities were assessed by monitoring running wheel activity and conducting elevated plus-maze and Morris water-maze tests with these mice. Compared with wild-type (WT) littermate controls, CCK-KO mice had normal food intake, fat absorption, body weight, and body mass. CCK-KO mice ate more food than control animals during the light period and less food during the dark period. Energy expenditure was unchanged between the genotypes; however, CCK-KO mice displayed greater fatty acid oxidation. CCK-KO mice were as active as WT animals in the running wheel test. CCK-KO mice spent more time in the closed arms of an elevated plus-maze, indicative of increased anxiety. Additionally, CCK-KO mice exhibited attenuated performance in a passive avoidance task and impaired spatial memory in the Morris water maze test. We conclude that CCK is involved in metabolic rate and is important for memory and exploration. CCK is intimately involved in multiple processes related to cognitive function and food intake regulation.  相似文献   

10.
Fasting has widespread physiological and behavioral effects such as increases in arcuate nucleus neuropeptide Y (NPY) gene expression in rodents, including Siberian hamsters. Fasting also stimulates foraging and food hoarding (appetitive ingestive behaviors) by Siberian hamsters but does relatively little to change food intake (consummatory ingestive behavior). Therefore, we tested the effects of third ventricular NPY Y1 ([Pro(34)]NPY) or Y5 ([D-Trp(34)]NPY) receptor agonists on these ingestive behaviors using a wheel running-based food delivery system coupled with simulated burrow housing. Siberian hamsters had 1) no running wheel access and free food, 2) running wheel access and free food, or 3) foraging requirements (10 or 50 revolutions/pellet). NPY (1.76 nmol) stimulated food intake only during the first 4 h postinjection ( approximately 200-1,000%) and mostly in hamsters with a foraging requirement. The Y1 receptor agonist markedly increased food hoarding (250-1,000%), increased foraging as well as wheel running per se, and had relatively little effect on food intake (<250%). Unlike NPY, the Y5 agonist significantly increased food intake, especially in foraging animals ( approximately 225-800%), marginally increased food hoarding (250-500%), and stimulated foraging and wheel running 4-24 h postinjection, with the distribution of earned pellets favoring eating versus hoarding across time. Across treatments, food hoarding predominated early postinjection, whereas food intake tended to do so later. Collectively, NPY stimulated both appetitive and consummatory ingestive behaviors in Siberian hamsters involving Y1/Y5 receptors, with food hoarding and foraging/wheel running (appetitive) more involved with Y1 receptors and food intake (consummatory) with Y5 receptors.  相似文献   

11.
Fasting triggers many effects, including increases in circulating concentrations of ghrelin, a primarily stomach-derived orexigenic hormone. Exogenous ghrelin treatment stimulates food intake, implicating it in fasting-induced increases in feeding, a consummatory ingestive behavior. In Siberian hamsters, fasting also stimulates appetitive ingestive behaviors such as foraging and food hoarding. Therefore, we tested whether systemic ghrelin injections (3, 30, and 200 mg/kg) would stimulate these appetitive behaviors using a running wheel-based food delivery system coupled with simulated burrow housing. We also measured active ghrelin plasma concentrations after exogenous ghrelin treatment and compared them to those associated with fasting. Hamsters had the following: 1) no running wheel access, free food; 2) running wheel access, free food; or 3) foraging requirement (10 revolutions/pellet), no free food. Ghrelin stimulated foraging at 0-1, 2-4, and 4-24 h postinjection but failed to affect wheel running activity not coupled to food. Ghrelin stimulated food intake initially (200-350%, first 4 h) across all groups; however, in hamsters with a foraging requirement, ghrelin also stimulated food intake 4-24 h postinjection (200-250%). Ghrelin stimulated food hoarding 2-72 h postinjection (100-300%), most markedly 2-4 h postinjection in animals lacking a foraging requirement (635%). Fasting increased plasma active ghrelin concentrations in a time-dependent fashion, with the 3- and 30-mg/kg dose creating concentrations of the peptide comparable to those induced by 24-48 h of fasting. Collectively, these data suggest that exogenous ghrelin, similar to fasting, increases appetitive behaviors (foraging, hoarding) by Siberian hamsters, but dissimilar to fasting in this species, stimulates food intake.  相似文献   

12.
Experimental studies manipulating diet and exercise have shown varying effects on metabolic syndrome components in both humans and rodents. To examine the potential interactive effects of diet, exercise and genetic background, we studied mice from four replicate lines bred (52 generations) for high voluntary wheel running (HR lines) and four unselected control lines (C). At weaning, animals were housed for 60 days with or without wheels and fed either a standard chow or Western diet (WD, 42% kcal from fat). Four serial (three juvenile and one adult) blood samples were taken to measure fasting total cholesterol (TC), high‐density lipoprotein cholesterol (HDL‐C), triglycerides and glucose. Western diet was obesogenic for all mice, even after accounting for the amount of wheel running and kilojoules consumed. Western diet significantly raised glucose as well as TC and HDL‐C concentrations. At the level of individual variation (repeatability), there was a modest correlation (r = 0.3–0.5) of blood lipids over time, which was reduced with wheel access and/or WD. Neither genetic selection history nor wheel access had a statistically significant effect on blood lipids. However, HR and C mice had divergent ontogenetic trajectories for body mass and caloric intake. HR mice also had lower adiposity, an effect that was dependent on wheel access. The environmental factors of diet and wheel access had pronounced effects on body mass, food consumption and fasting glucose concentrations, interacting with each other and/or with genetic strain. These data underscore the importance (and often unpredictable nature) of genotype‐by‐environment and environment‐by‐environment interactions when studying body weight regulation.  相似文献   

13.
Carbohydrate-rich diets may increase urinary excretion of chromium (Cr) and increase its requirements. This study was conducted to investigate the effect of grain type (barley v. corn) and Cr supplementation on feed intake, feeding behavior and weight gain in dairy calves. Forty-eight neonatal Holstein female calves were assigned randomly to four experimental diets in a 2×2 factorial arrangement. Experimental diets were either barley-based diet (BBD) or corn-based diet (CBD) supplemented with (+Cr) or without (−Cr) Cr as Cr-methionine (0.05 mg/kg of BW0.75). Chromium was provided in milk (from days 3 to 73 of life) during the pre-weaning period and then in pre-warmed water (from day 74 until day 94 of life) after weaning. Meal length tended to increase in calves fed the BBD v. CBD during the pre-weaning period. During the post-weaning period, meal size, inter-meal interval, and eating rate increased concurrently but meal frequency and eating time decreased in the BBD v. CBD. During the pre-weaning period, feed efficiency, BW at weaning, and heart girth increased and non-nutritive oral behaviors tended to decrease with Cr supplementation. Due to increased meal frequency, the starter feed intake but not eating time increased by Cr supplementation during the post-weaning period. Supplementing Cr increased starter feed intake, final BW, average daily gain and heart girth during the overall period. Rumination time increased in BBD+Cr calves due to increases in the frequency and duration of rumination, or decreased rumination bout interval. Overall, the type of grain had no effect on feed intake and growth performance; however, Cr supplementation decreased non-nutritive oral behaviors and increased starter feed intake via increasing the meal frequency and thereby improved growth performance.  相似文献   

14.
Brain cytokines, induced by various inflammatory challenges, have been linked to sickness behaviors, including fatigue. However, the relationship between brain cytokines and fatigue after exercise is not well understood. Delayed recovery of running performance after muscle-damaging downhill running is associated with increased brain IL-1beta concentration compared with uphill running. However, there has been no systematic evaluation of the direct effect of brain IL-1beta on running performance after exercise-induced muscle damage. This study examined the specific role of brain IL-1beta on running performance (either treadmill or wheel running) after uphill and downhill running by manipulating brain IL-1beta activity via intracerebroventricular injection of either IL-1 receptor antagonist (ra; downhill runners) or IL-1beta (uphill runners). Male C57BL/6 mice were assigned to the following groups: uphill-saline, uphill-IL-1beta, downhill-saline, or downhill-IL-1ra. Mice initially ran on a motor-driven treadmill at 22 m/min and -14% or +14% grade for 150 min. After the run, at 8 h (wheel cage) or 22 h (treadmill), uphill mice received intracerebroventricular injections of IL-1beta (900 pg in 2 microl saline) or saline (2 microl), whereas downhill runners received IL-1ra (1.8 microg in 2 microl saline) or saline (2 microl). Later (2 h), running performance was measured (wheel running activity and treadmill run to fatigue). Injection of IL-1beta significantly decreased wheel running activity in uphill runners (P<0.01), whereas IL-1ra improved wheel running in downhill runners (P<0.05). Similarly, IL-1beta decreased and Il-1ra increased run time to fatigue in the uphill and downhill runners, respectively (P<0.01). These results support the hypothesis that increased brain IL-1beta plays an important role in fatigue after muscle-damaging exercise.  相似文献   

15.
We examined voluntary wheel running and forced treadmill running exercise performance of wild-type mice and mice null for the desmin gene. When given access to a cage wheel, desmin null mice spent less time running and ran less far than wild-type mice. Wild-type mice showed a significant training effect with prolonged voluntary wheel running, as evidenced by an increase in mean running speed across the 3-wk exercise period, whereas desmin null mice did not. Desmin null mice also performed less well in acute treadmill stress and endurance tests compared with wild-type mice. We also evaluated serum creatine kinase (CK) activity in wild-type and desmin null mice in response to running. Voluntary running did not result in elevated CK activity in either wild-type or desmin null mice, whereas downhill treadmill running caused significant increases in serum CK activity in both wild-type and desmin null mice. However, the increase in serum CK was significantly less in desmin null mice than in wild-type mice. These results suggest that the lack of desmin adversely affects the ability of mice to engage in both chronic and acute bouts of endurance running exercise but that this decrement in performance is not associated with an increase in serum CK activity.  相似文献   

16.
Rats given access to a running wheel after drinking a flavored solution subsequently drink less of that liquid. It has been suggested that suppression of intake is the result of conditioned taste aversion (CTA). This study explored whether the magnitude of CTA is related to time in the wheel (i.e., amount of wheel running). During 4 days of conditioning, rats drank an orange liquid for 60 min. Immediately after drinking, experimental rats were transferred to running wheels for either 20 or 60 min. Control animals remained in their home cages. Following the conditioning phase, all rats received a preference test composed of the paired flavored liquid (i.e., orange solution) and water. Rats in both experimental groups (20 and 60 min) decreased their consumption of the orange flavored liquid, but no difference in CTA was found between these groups. Wheel running, whether for 20 or 60 min, suppresses the consumption of a liquid consumed immediately before wheel access. These findings are discussed in terms of discrepancies between CTA induced by wheel running and CTA induced by emetic agents.  相似文献   

17.
Estrogens differentially modulate behavior in the adult female rodent. Voluntary exercise can also impact behavior, often reversing age associated decrements in memory processes. Our research group has published a series of papers reporting a deficit in the acquisition of an operant working memory task, delayed spatial alternation (DSA), following 17β-estradiol treatment to middle-aged ovariectomized (OVX) rats. The current study examined if voluntary exercise could attenuate the 17β-estradiol induced deficits on DSA performance. OVX 12-month old Long–Evans rats were implanted with a Silastic capsule containing 17β-estradiol (10% in cholesterol: low physiological range) or with a blank capsule. A subset of the 17β-estradiol and OVX untreated rats were given free access to a running wheel in their home cage. All rats were tested for 40 sessions on the DSA task. Surprisingly, we found running wheel access to impair initial acquisition of the DSA task in 17β-estradiol treated rats, an effect not seen in OVX untreated rats given running wheel access. This deficit was driven by an increase in perseverative responding on a lever no longer associated with reinforcement. We also report for the first time a 17β-estradiol induced impairment on the DSA task following a long intertrial delay (18-sec), an effect revealed following more extended testing than in our previous studies (15 additional sessions). Overall, running wheel access increased initial error rate on the DSA task in 17β-estradiol treated middle-aged OVX rats, and failed to prevent the 17β-estradiol induced deficits in performance of the operant DSA task in later testing sessions.  相似文献   

18.
Timing activity to match resource availability is a widely conserved ability in nature. Scheduled feeding of a limited amount of food induces increased activity prior to feeding time in animals as diverse as fish and rodents. Typically, food anticipatory activity (FAA) involves temporally restricting unlimited food access (RF) to several hours in the middle of the light cycle, which is a time of day when rodents are not normally active. We compared this model to calorie restriction (CR), giving the mice 60% of their normal daily calorie intake at the same time each day. Measurement of body temperature and home cage behaviors suggests that the RF and CR models are very similar but CR has the advantage of a clearly defined food intake and more stable mean body temperature. Using the CR model, we then attempted to verify the published result that orexin deletion diminishes food anticipatory activity (FAA) but observed little to no diminution in the response to CR and, surprisingly, that orexin KO mice are refractory to body weight loss on a CR diet. Next we tested the orexigenic neuropeptide Y (NPY) and ghrelin and the anorexigenic hormone, leptin, using mouse mutants. NPY deletion did not alter the behavior or physiological response to CR. Leptin deletion impaired FAA in terms of some activity measures, such as walking and rearing, but did not substantially diminish hanging behavior preceding feeding time, suggesting that leptin knockout mice do anticipate daily meal time but do not manifest the full spectrum of activities that typify FAA. Ghrelin knockout mice do not have impaired FAA on a CR diet. Collectively, these results suggest that the individual hormones and neuropepetides tested do not regulate FAA by acting individually but this does not rule out the possibility of their concerted action in mediating FAA.  相似文献   

19.
The present study was designed to compare the putative differential behavioral consequences of treatment with SCH23390 (a selective dopamine D1 receptor blocker) and raclopride (a selective dopamine D2 receptor blocker) by employing a run-climb-run (RCR) behavioral task of different lengths. Rats were trained to traverse an uncovered floor alleyway (150 cm), climb a vertical rope (70 or 130 cm), and run across an upper board (100 cm) to access water for the reinforcement. At doses of 0.05, 0.10 and 0.15 mg/kg administered intraperitoneally 60 min before the behavioral session, both SCH23390 and raclopride significantly increased the total time to complete the tasks in a dose-related fashion. Microstructural analysis on the RCR behavioral performance revealed that the most apparent impairment induced by either drug was observed as the subject shifted motion from the end of the floor alleyway to the rope when hopping or to initiate climbing. However, the motion shift from climbing to running on the upper board was significantly impaired by raclopride, but not by SCH23390. Surprisingly, neither SCH23390 nor raclopride affected the climbing response itself. Running responses on the floor alleyway board were significantly disrupted by raclopride, whereas those on the upper board were significantly disrupted by SCH23390. Deficits induced by both drugs were more profound for the longer compared to the shorter rope, and were most notably shown at the transition area from running to climbing. These data indicate that both dopamine D1 and D2 receptors are involved in the RCR behavior performance. The results also suggest that the cost of motoric demand for behavioral performance is important for evaluating of the effects of drugs blocking dopamine receptors.  相似文献   

20.
Running wheel access and resulting voluntary exercise alter food intake and reduce body weight. The neural mechanisms underlying these effects are unclear. In this study, we first assessed the effects of 7 days of running wheel access on food intake, body weight, and hypothalamic gene expression. We demonstrate that running wheel access significantly decreases food intake and body weight and results in a significant elevation of CRF mRNA expression in the dorsomedial hypothalamus (DMH) but not the paraventricular nucleus. Seven-day running wheel access also results in elevated arcuate nucleus and DMH neuropeptide Y gene expression. To assess a potential role for elevated DMH CRF activity in the activity-induced changes in food intake and body weight, we compared changes in food intake, body weight, and hypothalamic gene expression in rats receiving intracerebroventricular (ICV) CRF antagonist alpha-helical CRF or vehicle with or without access to running wheels. During a 4-day period of running wheel access, we found that exercise-induced reductions of food intake and body weight were significantly attenuated by ICV injection of the CRF antagonist. The effect on food intake was specific to a blockade of activity-induced changes in meal size. Central CRF antagonist injection further increased DMH CRF mRNA expression in exercised rats. Together, these data suggest that DMH CRF play a critical role in the anorexia resulting from increased voluntary exercise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号