首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mobilization of iron from ferritin by xanthine oxidase was studied under aerobic and anaerobic conditions. Aerobic iron release amounted to approx. 3.7 nmol/ml in 10 min. This amount was decreased by approx. 30% under anaerobic conditions. Aerobic iron mobilization involved two mechanisms. About 70% was released by O2.- generated by xanthine oxidase. The rest was released by O2(.-)-independent mechanisms, which also accounted for the total iron release when O2 was absent. A possible transfer of reducing equivalents directly from xanthine oxidase to ferritin is discussed. The results imply that, in pathological conditions with increased formation of O2.-, iron may be released from ferritin. Furthermore, in hypoxic tissues xanthine oxidase can release iron from ferritin by an O2(.-)-independent process. Free iron is liable to catalyse the formation of the extremely reactive and damaging OH. radical.  相似文献   

2.
The involvement of "free" iron in damage caused by oxidative stress is well recognized. Superoxide generated in a short burst and at a relatively high flux by the xanthine/xanthine oxidase couple is known to release iron from ferritin in the presence of phenanthroline derivatives as iron chelators. However, superoxide generation via xanthine oxidase is accompanied by the simultaneous direct generation of hydrogen peroxide and, in the presence of ferritin, there is also a superoxide-independent release of iron. In this study it was found that the iron chelator employed attenuates superoxide formation from the xanthine/xanthine oxidase couple. The reaction of ferritin and transferrin with a clean chemical source of superoxide, di(4-carboxybenzyl)hyponitrite (SOTS-1) was therefore investigated. The efficiency of superoxide-induced iron release from ferritin increases dramatically as the superoxide flux is decreased, reaching as high as 0.5 Fe per O2*-. Treatment of ferritin for 16 h with SOTS-1 yielded as many as 130 Fe atoms/ferritin molecule, which greatly exceeds the amount of possible "contaminating" iron absorbed on the protein shell.  相似文献   

3.
On the limited ability of superoxide to release iron from ferritin   总被引:3,自引:0,他引:3  
Reductive release of iron from ferritin may catalyze cytotoxic radical reactions like the Haber-Weiss reaction. The ability of .O2- to mobilize Fe(II) from ferritin was studied by using the xanthine/xanthine oxidase reaction, with and without superoxide dismutase, and with bathophenanthroline sulphonate as the chelator. Not more than one or two Fe(II)/ferritin molecules could be released by an .O2(-)-dependent mechanism, even after repeated exposures of ferritin to bursts of .O2-. The amount of releaseable iron depended on the size and the age of the iron core, but not on the iron content of the protein shell of ferritin which was manipulated by chelators and addition of FeCl3. The kinetic characteristics of the .O2(-)-mediated iron release indicated the presence of a small pool of readily available iron at the surface of the core. The very limited .O2(-)-dependent release of iron from ferritin is compatible with a protective role of ferritin against toxic iron-catalyzed reactions.  相似文献   

4.
Ceruloplasmin (CP) was found to inhibit xanthine oxidase and ferritin-dependent peroxidation of phospholipid liposomes, as evidenced by decreased malondialdehyde formation. Ceruloplasmin was also shown to inhibit superoxide-mediated mobilization of iron from ferritin, in a concentration-dependent manner, as measured spectrophotometrically using the iron(II) chelator bathophenanthroline sulfonate. Ceruloplasmin failed to function as a peroxyl radical-scavenging antioxidant as evidenced by its inability to inhibit free radical-initiated peroxidation of linoleic acid, suggesting that CP inhibited lipid peroxidation by affecting the availability of ferritin-derived iron. In addition, CP scavenged xanthine oxidase-derived superoxide as measured spectrophotometrically via its effect on cytochrome c reduction. However, the extent of the superoxide scavenging of CP did not quantitatively account for its effects on iron release, suggesting that CP inhibits superoxide-dependent mobilization of ferritin iron independently of its ability to scavenge superoxide. The effects of CP and apoferritin on iron-catalyzed lipid peroxidation in systems containing exogenously added ferrous iron was also investigated. In the absence of apoferritin, CP exhibited a concentration-dependent prooxidant effect. However, CP-dependent, iron-catalyzed lipid peroxidation was inhibited by the addition of apoferritin. Apoferritin did not function as a peroxyl radical-scavenging antioxidant but was shown to incorporate iron in the presence of CP. These data suggest that CP inhibits superoxide and ferritin-dependent lipid peroxidation largely via its ability to reincorporate reductively mobilized iron back into ferritin.  相似文献   

5.
Ferritin and superoxide-dependent lipid peroxidation   总被引:23,自引:0,他引:23  
Ferritin was found to promote the peroxidation of phospholipid liposomes, as evidenced by malondialdehyde formation, when incubated with xanthine oxidase, xanthine, and ADP. Activity was inhibited by superoxide dismutase but markedly stimulated by the addition of catalase. Xanthine oxidase-dependent iron release from ferritin, measured spectrophotometrically using the ferrous iron chelator 2,2'-dipyridyl, was also inhibited by superoxide dismutase, suggesting that superoxide can mediate the reductive release of iron from ferritin. Potassium superoxide in crown ether also promoted superoxide dismutase-inhibitable release of iron from ferritin. Catalase had little effect on the rate of iron release from ferritin; thus hydrogen peroxide appears to inhibit lipid peroxidation by preventing the formation of an initiating species rather than by inhibiting iron release from ferritin. EPR spin trapping with 5,5-dimethyl-1-pyrroline-N-oxide was used to observe free radical production in this system. Addition of ferritin to the xanthine oxidase system resulted in loss of the superoxide spin trap adduct suggesting an interaction between superoxide and ferritin. The resultant spectrum was that of a hydroxyl radical spin trap adduct which was abolished by the addition of catalase. These data suggest that ferritin may function in vivo as a source of iron for promotion of superoxide-dependent lipid peroxidation. Stimulation of lipid peroxidation but inhibition of hydroxyl radical formation by catalase suggests that, in this system, initiation is not via an iron-catalyzed Haber-Weiss reaction.  相似文献   

6.
Superoxide-mediated release of iron from ferritin by some flavoenzymes   总被引:1,自引:0,他引:1  
NADH-lipoamide dehydrogenase mobilized iron from ferritin under aerobic conditions. Superoxide dismutase strongly inhibited this mobilization, indicating that the superoxide radical is generated by the enzymatic reaction and release iron from ferritin. Addition of lipoamide as an electron acceptor to NADH-lipoamide dehydrogenase increased the release of iron from ferritin and this release was partially inhibited by superoxide dismutase. Similarly, addition of menadione (2-methyl-1, 4-naphthoquinone) as an electron acceptor to xanthine-xanthine oxidase promoted the release of iron from ferritin and this release was strongly inhibited by superoxide dismutase. These results suggest that dihydrolipoamide and semiquinone of menadione can react with oxygen to form the superoxide radical that mediates release of iron from ferritin.  相似文献   

7.
《Free radical research》2013,47(1):153-159
Ceruloplasmin (CP) effectively inhibited superoxide and ferritin-dependent peroxidation of phospholipid liposomes, using xanthine oxidase or gamma irradiation of water as sources of superoxide. In addition, CP inhibited superoxide-dependent mobilization of iron from ferritin. suggesting that CP inhibited lipid peroxidation by decreasing the availability of iron from ferritin. CP also exhibited some superoxide scavenging activity as evidenced by its inhibition of superoxide-dependent cytochrome c reduction. However, superoxide scavenging by CP did not quantitatively account for its inhibitory effects on iron release. The effects of CP on iron-catalyzed lipid peroxidation in systems containing exogenously added ferrous iron was also investigated. CP exhibited prooxidant and antioxidant effects; CP stimulated at lower concentrations, reached a maximum. and inhibited at higher concentrations. However. the addition of apoferritin inhibited CP and Fe(II)-catalyzed lipid peroxidation at all concentrations of CP. In addition, CP catalyzed the incorporation of Fe(II) into apoferritin. Collectively these data suggest that CP inhibits superoxide and ferritin-dependent lipid peroxidation via its ability to incorporate reductively-mobilized iron into ferritin.  相似文献   

8.
This report describes studies yielding additional evidence that superoxide anion (O2) production by some biological oxidoreductase systems is a potential source of hydroxyl radical production. The phenomenon appears to be an intrinsic property of certain enzyme systems which produce superoxide and H2O2, and can result in extensive oxidative degradation of membrane lipids. Earlier studies had suggested that iron (chelated to maintain solubility) augmented production of the hydroxyl radical in such systems according to the following reaction sequence: O2 + Fe3+ leads to O2 + Fe2+ Fe2+ + H2O2 leads to Fe3+ + HO-+OH-. The data reported below provide additional support for the occurrence of these reactions, especially the reduction of Fe3+ by superoxide. Because the conditions for such reactions appear to exist in animal tissues, the results indicate a mechanism for the initiation and promotion of peroxidative attacks on membrane lipids and also suggest that the role of antioxidants in intracellular metabolism may be to inhibit initiation of degradative reactions by the highly reactive radicals formed extraneously during metabolic activity. This report presents the following new information: (1) Fe3+ is reduced to Fe2+ during xanthine oxidase activity and a significant part of the reduction was oxygen dependent. (2) Mn2+ appears to function as an efficient superoxide anion scavenger, and this function can be inhibited by EDTA. (3) The O2-dependent reduction of Fe3+ to Fe2+ by xanthine oxidase activity is inhibited by Mn2+, which, in view of statement 2 above, is a further indication that the reduction of the iron involves superoxide anion. (4) Free radical scavengers prevent or reverse the Fe3+ inhibiton of cytochrome c3+ reduction by xanthine oxidase. (5) The inhibition of xanthine oxidase-catalyzed reduction of cyt c3+ by Fe3+ does not affect uric acid production by the xanthine oxidase system. (6) The reoxidation of reduced cyt c in the xanthine oxidase system is markedly enhanced by Fe3+ and is apparently due to enhanced HO-RADICAL formation since the Fe3+-stimulated reoxidation is inhibited by free radical scavengers, including those with specificity for the hydroxyl radical.  相似文献   

9.
Luminol chemiluminescence induced by the xanthine or hypoxanthine-O2-xanthine oxidase system is analyzed and compared. Characteristics of the light emission curves were examined considering the conventional reaction scheme for the oxidation of both substrates in the presence of xanthine oxidase. The ratio of the areas of the rate of superoxide production during substrate oxidation to uric acid. The O2-. to uric acid ratio for each substrate can account for differences in xanthine and hypoxanthine-supported light emission, since uric acid is a strong inhibitor of O2-.-dependent luminol chemiluminescence. These results are consistent with a free radical scavenging role for uric acid. A similar but weaker scavenging effect of xanthine may also contribute to the observed differences in chemiluminescent yields between both substrates.  相似文献   

10.
Superoxide radicals, a species known to mobilize ferritin iron, and their interaction with catalytic iron have been implicated in the pathogenesis of alcohol-induced liver injury. The mechanism(s) by which ethanol metabolism generates free radicals and mobilizes catalytic iron, however, is not fully defined. In this investigation the role of hepatic aldehyde oxidase in the mobilization of catalytic iron from ferritin was studied in vitro. Iron mobilization due to the metabolism of ethanol to acetaldehyde by alcohol dehydrogenase was increased 100% by the addition of aldehyde oxidase. Iron release was favored by low pH and low oxygen concentration. Mobilization of iron due to acetaldehyde metabolism by aldehyde oxidase was completely inhibited by superoxide dismutase but not by catalase suggesting that superoxide radicals mediate mobilization. Acetaldehyde-aldehyde oxidase mediated reduction of ferritin iron was facilitated by incubation with menadione, an electron acceptor for aldehyde oxidase. Mobilization of ferritin iron due to the metabolism of acetaldehyde by aldehyde oxidase may be a fundamental mechanism of alcohol-induced liver injury.  相似文献   

11.
Evidence in alcoholics as well as in experimental models support the role of hepatic lipid peroxidation in the pathogenesis of alcohol-induced liver injury, but the mechanism of this injury is not fully delineated. Previous studies of the metabolism of ethanol by alcohol dehydrogenase revealed iron mobilization from ferritin that was markedly stimulated by superoxide radical generation by xanthine oxidase. Peroxidation of hepatic lipid membranes (assessed as malondialdehyde production) was studied during in vitro alcohol metabolism by alcohol dehydrogenase. Peroxidation was initiated by acetaldehyde-xanthine oxidase, stimulated by ferritin, and inhibited by superoxide dismutase or chelation or iron with desferrioxamine. In conclusion, lipid peroxidation may be initiated during the metabolism of ethanol by alcohol dehydrogenase by an iron-dependent acetaldehyde-xanthine oxidase mechanism.  相似文献   

12.
Although folate deficiency and increased requirements for folate are observed in most alcoholics, the possibility that acetaldehyde generated from ethanol metabolism may increase folate catabolism has not been previously demonstrated. Folate cleavage was studied in vitro during the metabolism of acetaldehyde by xanthine oxidase, measured as the production of p-aminobenzoylglutamate from folate using h.p.l.c. Acetaldehyde/xanthine oxidase generated superoxide, which cleaved folates (5-methyltetrahydrofolate greater than folinic acid greater than folate) and was inhibited by superoxide dismutase. Cleavage was increased by addition of ferritin and inhibited by desferrioxamine (a tight chelator of iron), suggesting the importance of catalytic iron. Superoxide generated from the metabolism of ethanol to acetaldehyde in the presence of xanthine oxidase in vivo may contribute to the severity of folate deficiency in the alcoholic.  相似文献   

13.
Permeation of the erythrocyte stroma by superoxide radical.   总被引:13,自引:0,他引:13  
Superoxide anion, generated by xanthine oxidase within vesicles formed from washed erythrocyte ghosts, crosses the vesicle membrane to reduce cytochrome c in the medium (Lynch, R. E., and Fridovich, I. (1978) J. Biol. Chem, 253, 1838-1845). To determine whether O2- could travel through the membrane in the "channel" for the exchange of stable anions, the effects of two specific inhibitors of anion exchange, 4-acetamido-4'-isothiocyano-2,2' disulfonic acid stilbene (SITS) and 4,4'-diisothiocyano-2,2' disulfonic acid stilbene (DIDS), on the escape of O2- from vesicles were studied. The reduction of external cytochrome c, caused by O2- produced by the enzymic turnover of internal xanthine oxidase, was 85 to 90% inhibited by SITS and DIDS. If SITS impeded the egress of O2- from vesicles, it should enhance the internal effects of O2- and antagonize the inhibition of these effects by external superoxide dismutase. External superoxide dismutase inhibited the lysis of vesicles containing xanthine oxidase. SITS (60 micron) partially reversed this inhibition. It appears that O2- can cross the membrane of the erythrocyte in the anion channel.  相似文献   

14.
The reaction of xanthine and xanthine oxidase generates superoxide and hydrogen peroxide. In contrast to earlier works, recent spin trapping data (Kuppusamy, P., and Zweier, J.L. (1989) J. Biol. Chem. 264, 9880-9884) suggested that hydroxyl radical may also be a product of this reaction. Determining if hydroxyl radical results directly from the xanthine/xanthine oxidase reaction is important for 1) interpreting experimental data in which this reaction is used as a model of oxidant stress, and 2) understanding the pathogenesis of ischemia/reperfusion injury. Consequently, we evaluated the conditions required for hydroxyl radical generation during the oxidation of xanthine by xanthine oxidase. Following the addition of some, but not all, commercial preparations of xanthine oxidase to a mixture of xanthine, deferoxamine, and either 5,5-dimethyl-1-pyrroline-N-oxide or a combination of alpha-phenyl-N-tert-butyl-nitrone and dimethyl sulfoxide, hydroxyl radical-derived spin adducts were detected. With other preparations, no evidence of hydroxyl radical formation was noted. Xanthine oxidase preparations that generated hydroxyl radical had greater iron associated with them, suggesting that adventitious iron was a possible contributing factor. Consistent with this hypothesis, addition of H2O2, in the absence of xanthine, to "high iron" xanthine oxidase preparations generated hydroxyl radical. Substitution of a different iron chelator, diethylenetriaminepentaacetic acid for deferoxamine, or preincubation of high iron xanthine oxidase preparations with chelating resin, or overnight dialysis of the enzyme against deferoxamine decreased or eliminated hydroxyl radical generation without altering the rate of superoxide production. Therefore, hydroxyl radical does not appear to be a product of the oxidation of xanthine by xanthine oxidase. However, commercial xanthine oxidase preparations may contain adventitious iron bound to the enzyme, which can catalyze hydroxyl radical formation from hydrogen peroxide.  相似文献   

15.
Cell injury from hyperoxia is associated with increased formation of superoxide radicals (O2-). One potential source for O2- radicals is the reduction of molecular O2 catalyzed by xanthine oxidase (XO). Physiologically, this reaction occurs at a relatively low rate, because the native form of the enzyme is xanthine dehydrogenase (XD) which produces NADH instead of O2-. Reports of accelerated conversion of XD to XO, and increased formation of O2- formation in ischemia-reperfusion injury, led us to examine whether hyperoxia, which is known to increase O2- radical formation, is associated with increased lung XO activity, and accelerated conversion of XD to XO. We exposed 3-month-old rats either to greater than 98% O2 or room air. After 48 h, we sacrificed the rats and measured XD and XO activities and uric acid contents of the lungs. We also measured the activities of the two enzymes in the heart as a control organ. We found that the activity of XD was not altered significantly by hyperoxia in rat lungs or hearts, but XO activity was markedly lower in the lung, whether expressed per whole organ or per milligram protein, and remained unchanged in the heart. Lung uric acid content was also significantly lower with hyperoxia. The decrease in lung XO activity may reflect inactivation of the enzyme by reactive O2 metabolites, possibly as a negative feedback mechanism. The concomitant decrease in uric acid content suggests either decreased production mediated by XO due to its inactivation or greater utilization of uric acid as an antioxidant. We examined these postulates in vitro using a xanthine/xanthine oxidase system and found that H2O2, but not uric acid, has an inhibitory effect on O2- formation in the system. We therefore conclude that hyperoxia is not associated with increased conversion of XD to XO, and that the exact contribution of XO to hyperoxic lung injury in vivo remains unclear.  相似文献   

16.
Polarographic study of the mobilization of ferritin ironPolarographic study allows to propose a model for mobilization of ferritin iron: an equilibrium exists between iron core and small quantities of iron outside the protein.These iron atoms would be lying on electron acceptor sites including SH groups. The number of sites is dependent on iron content of ferritin.Therefore, the iron could be removed by the action of reducing agents such as xanthine oxidase or ascorbic acid, and then chelated by a complexing agent.  相似文献   

17.
In a recent publication [(1987) FEBS Lett. 210, 195-198] the authors claim the use of cytochrome c to detect superoxide anion underestimates the real rate of superoxide anion formation on the basis that: (i) the rate of uric acid formation by xanthine oxidase is about 4-fold faster than the rate of cytochrome c reduction and (ii) hydrogen peroxide formed upon dismutation of the superoxide anion generated by xanthine oxidase is capable of reoxidizing ferrocytochrome c. That paper may have been misleading for readers not very familiar with the field of oxygen radicals, since both assumptions are, in fact, incorrect. In this report we demonstrate that the build up in concentration of H2O2 during most reactions in which superoxide anion is being produced is not enough to affect the rate of cytochrome c reduction. Our results suggest that the authors may have been misled by an artifact due to exposure of the samples containing H2O2 to UV light, which generates hydroxyl radicals by photolysis.  相似文献   

18.
Neutrophils which accumulate at sites of inflammation secrete a number of injurious oxidants which are highly reactive with protein sulfhydryls. The present study examined the possibility that this reactivity with thiols may cause protein damage by mobilizing zinc from cellular metalloproteins in which the metal is bound to cysteine. The ability of the three principal neutrophil oxidants, hypochlorous acid (HOCl), superoxide (.O2-), and hydrogen peroxide (H2O2), to cleave thiolate bonds and mobilize complexed zinc was compared using two model compounds (2,3-dimercaptopropanol and metallothionein peptide fragment 56-61), as well as metallothionein. With all compounds, 50 microM HOCl caused high rates of Zn2+ mobilization as measured spectrophotometrically with the metallochromic indicator 4-(2-pyridylazo)resorcinol. Xanthine (500 microM) plus xanthine oxidase (30 mU), which produced a similar concentration of .O2-, also effected a rapid rate of Zn2+ mobilization which was inhibited by superoxide dismutase but not catalase, indicating that .O2- is also highly reactive with thiolate bonds. In contrast, H2O2 alone was much less reactive at comparable concentrations. These data suggest that HOCl and .O2- can cause damage to cellular metalloproteins through the mobilization of complexed zinc. In view of the essential role played by zinc in numerous cellular processes, Zn2+ mobilization by neutrophil oxidants may cause significant cellular injury at sites of inflammation.  相似文献   

19.
Quantification of intracellular and extracellular levels and production rates of reactive oxygen species is crucial to understanding their contribution to tissue pathophysiology. We measured basal rates of oxidant production and the activity of xanthine oxidase, proposed to be a key source of O2- and H2O2, in endothelial cells. Then we examined the influence of tumor necrosis factor-alpha and lipopolysaccharide on endothelial cell oxidant metabolism, in response to the proposal that these inflammatory mediators initiate vascular injury in part by stimulating endothelial xanthine oxidase-mediated production of O2- and H2O2. We determined a basal intracellular H2O2 concentration of 32.8 +/- 10.7 pM in cultured bovine aortic endothelial cells by kinetic analysis of aminotriazole-mediated inactivation of endogenous catalase. Catalase activity was 5.72 +/- 1.61 U/mg cell protein and glutathione peroxidase activity was much lower, 8.13 +/- 3.79 mU/mg protein. Only 0.48 +/- 0.18% of total glucose metabolism occurred via the pentose phosphate pathway. The rate of extracellular H2O2 release was 75 +/- 12 pmol.min-1.mg cell protein-1. Intracellular xanthine dehydrogenase/oxidase activity determined by pterin oxidation was 2.32 +/- 0.75 microU/mg with 47.1 +/- 11.7% in the oxidase form. Intracellular purine levels of 1.19 +/- 1.04 nmol hypoxanthine/mg protein, 0.13 +/- 0.17 nmol xanthine/mg protein, and undetectable uric acid were consistent with a low activity of xanthine dehydrogenase/oxidase. Exposure of endothelial cells to 1000 U/ml tumor necrosis factor (TNF) or 1 microgram/ml lipopolysaccharide (LPS) for 1-12 h did not alter basal endothelial cell oxidant production or xanthine dehydrogenase/oxidase activity. These results do not support a casual role for H2O2 in the direct endothelial toxicity of TNF and LPS.  相似文献   

20.
A new HPLC method was set up for the simultaneous evaluation of the amount of uric acid and NADH produced by incubation of tissue fractions containing xanthine oxidase, from which the activity of both type "O" (oxidase) and type "D" (dehydrogenase) xanthine oxidase can be calculated. After incubation of the enzyme fraction and ethanol extraction, HPLC analysis is directly carried out. Sensitivity of the method is high enough for the evaluation of xanthine oxidase activity at the lowest reported tissue values. The reliability of the method was tested measuring the enzyme activity in rat heart and kidney extracts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号