首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thermoregulation behavior of Lucilia sericata larvae (Diptera: Calliphoridae), a necrophagous species that feeds on vertebrate cadavers, was investigated. These larvae require high heat incomes to develop, and can elevate temperatures by forming large aggregates. We hypothesized that L. sericata larvae should continue to feed at temperatures up to 38 °C, which can be reached inside larval masses. Thermal regulation behavior such as movement between a hot food spot and colder areas was also postulated. The hypotheses were tested by tracking for 1 h the activity of single, starved third instar larvae in a Petri dish containing 1 food spot (FS) that was heated to a constant temperature of 25 °C, 34 °C or 38 °C with an ambient temperature of 25 °C. The influence of previous conspecific activity in the food on larval behavior was also tested. The crops of larvae were dissected to monitor food content in the digestive systems. Based on relative crop measurements, larvae fed at all food temperatures, but temperature strongly affected larval behavior and kinematics. The total time spent by larvae in FS and the duration of each stay decreased at high FS temperature. Previous activity of conspecifics in the food slightly increased the time spent by larvae in FS and also decreased the average distance to FS. Therefore, necrophagous L. sericata larvae likely thermoregulate during normal feeding activities by adjusting to local fluctuations in temperature, particularly inside maggot masses. By maintaining a steady internal body temperature, larvae likely reduce their development time.  相似文献   

2.
The ability of prey to detect predators and respond accordingly is critical to their survival. The use of chemical cues by animals in predator detection has been widely documented. In many cases, predator recognition is facilitated by the release of alarm cues from conspecific victims. Alarm cues elicit anti‐predator behavior in many species, which can reduce their risk of being attacked. It has been previously demonstrated that adult long‐toed salamanders, Ambystoma macrodactylum, exhibit an alarm response to chemical cues from injured conspecifics. However, whether this response exists in the larval stage of this species and whether it is an innate or a learned condition is unknown. In the current study, we examined the alarm response of naïve (i.e. lab‐reared) larval long‐toed salamanders. We conducted a series of behavioral trials during which we quantified the level of activity and spatial avoidance of hungry and satiated focal larvae to water conditioned by an injured conspecific, a cannibal that had recently been fed a conspecific or a non‐cannibal that was recently fed a diet of Tubifex worms. Focal larvae neither reduced their activity nor spatially avoided the area of the stimulus in either treatment when satiated, and exhibited increased activity towards the cannibal stimulus when hungry. We regard this latter behavior as a feeding response. Together these results suggest that an anti‐predator response to injured conspecifics and to cannibalistic conspecifics is absent in naïve larvae. Previous studies have shown that experienced wild captured salamanders do show a response to cannibalistic conspecifics. Therefore, we conducted an additional experiment examining whether larvae can learn to exhibit anti‐predator behavior in response to cues from cannibalized conspecifics. We exposed larvae to visual, chemical and tactile cues of stimulus animals that were actively foraging on conspecifics (experienced) or a diet of Tubifex (naïve treatment). In subsequent behavioral treatments, experienced larvae significantly reduced their activity compared to naive larvae in response to chemical cues of cannibals that had recently consumed conspecifics. We suggest that this behavior is a response to alarm cues released by consumed conspecifics that may have labeled the cannibal. Furthermore, over time, interactions with cannibals may cause potential prey larvae to learn to avoid cannibals regardless of their recent diet.  相似文献   

3.
Predation is a pervasive selective agent shaping a prey's behaviour, morphology and life history. To survive, prey animals have to respond adaptively to predation threats and this can be achieved through learned predator recognition. Cultural transmission of predator recognition is likely a widespread means of learning in social animals, including mammals, birds and fishes. However, no studies have investigated the cultural transmission of predator recognition in amphibians. In our study, we examined whether naïve woodfrog (Rana sylvatica) tadpoles can acquire the recognition of the odour of a predatory tiger salamander (Ambystoma tigrinum) from experienced conspecifics. After conditioning some tutors to recognize salamander odour, we paired naïve observer tadpoles with either a salamander‐naïve or salamander‐experienced tutor and exposed the pairs to either salamander odour or a water control. Observers were subsequently tested alone for a response to salamander odour. We found that when given salamander odour, observer tadpoles that were paired with a salamander‐experienced tutor successfully learned to recognize the salamander odour as a threat, whereas the observers paired with salamander‐naïve tutors did not. Likewise, tadpoles exposed to the water control did not learn to recognize the salamander regardless of whether they were paired with a naïve or experienced tutor. This is the first study demonstrating cultural transmission of predator recognition in an amphibian species.  相似文献   

4.
Introduced mammalian predators may pose a high risk for native and naïve prey populations, but little is known about how native fish species may recognize and respond to scents from introduced mammalian predators. We investigated the role of diet‐released chemical cues in facilitating predator recognition, hypothesizing that native brown trout (Salmo trutta) would exhibit antipredator behaviours to faeces scents from the introduced American mink (Neovision vison) fed conspecifics, but not to non‐trout diets. In treatments‐control and replicate stream tank experiments, brown trout showed significant antipredator responses to faeces scent from mink fed conspecifics, but not to faeces scent from mink fed a non‐trout diet (chicken), or the non‐predator food control, Eurasian beaver (Castor fiber). We conclude that native and naïve brown trout show relevant antipredator behaviours to an introduced mammalian predator, presumably based on diet‐released conspecific alarm cues and thereby estimate the predation risk.  相似文献   

5.
Numerous insect species are necrophagous, with Dipterans and Coleopterans being the most abundant on a corpse. Whether the presence of necrophageous species on a corpse affects the attraction of adult blowflies to the corpse is sparsely studied. We test the hypothesis that Lucilia sericata can discriminate the odour of a noncolonized cadaver from the odour of a cadaver on which conspecific and/or heterospecific necrophagous insects are feeding. The volatile organic compounds are collected from decomposing rats under four modalities: (i) in the absence of insects; (ii) in the presence of L. sericata adults; (iii) in the presence of Dermestes frischii adults; (iv) and in the presence of both D. frischii adults and L. sericata adults. During a multiple‐choice bioassay, blowflies are exposed to the four odour samples, and are shown to prefer the odour of a corpse where conspecific larvae are present. We also expect blowflies to avoid cadavers on which predators where present, although L. sericata are not repulsed by the odour of a cadaver colonized by hide beetles. We then compare the average quantities of all 61 volatile molecules identified, finding that the presence of necrophagous insects impacts some of them. However, none of the volatile organic compounds previously reported in the literature as being attractive for L. sericata adults are impacted by the presence of necrophagous insects. The results of the present study suggest that blowfly larvae modify the volatilome of a corpse, enabling adults to discriminate a colonized from a noncolonized corpse.  相似文献   

6.
1. For predators, prey selection should maximise nutrition and minimise fitness costs. In the present study, it was investigated whether a generalist predator [Chrysoperla carnea (Stephens) lacewing larvae] rejected harmful, chemically‐defended prey [Brevicoryne brassicae (Linnaeus) aphids] when non‐defended prey [Myzus persicae (Sulzer) aphids] were available. 2. It was tested: (i) whether consuming different prey species affects predator mortality; (ii) whether naïve predators reject chemically‐defended prey while foraging when non‐defended prey are available; (iii) whether the relative abundance of each prey affects the predator's prey choice; and (iv) whether predators learn to avoid consuming chemically‐defended prey after exposure to both prey species. 3. Consumption of B. brassicae yielded greater C. carnea mortality than M. persicae consumption, but naïve C. carnea did not reject B. brassicae in favour of M. persicae during foraging. When presented at unequal abundances, naïve predators generally consumed each aphid species according to their initial relative abundance, although, predation of non‐defended prey was less than expected when defended prey were initially more abundant, indicating a high consumption of B. brassicae impeded M. persicae consumption. With experience, C. carnea maintained predation of both aphid species but consumed more M. persicae than B. brassicae, indicating a change in behaviour. 4. Although prey choice by C. carnea may change with experience of available prey, prey chemical defences do not appear to influence prey choice by naïve predators. This inability to avoid harmful prey could facilitate wider, indirect interactions. Myzus persicae may benefit where high consumption of B. brassicae hinders predators in the short term, and in the long term, increases predator mortality.  相似文献   

7.
8.
Larvae of the greater wax moth (GWM), Galleria mellonella, a destructive pest of the honeybee (Apis mellifera), have been observed to display aggregation behaviours. However, the underlying mechanism by which these larvae come together remains unknown. We hypothesized that the GWM larvae detect, orient towards and utilize conspecific larval chemical cues to aggregate in groups. We used dual‐choice olfactometer assays to investigate the involvement of conspecific larval odours in their aggregation amongst 3–5th instar and 8th instar larvae. The assays revealed that only 8th instar larvae were significantly attracted to their odours and those emanating from newly spun cocoons. Coupled gas chromatography–mass spectrometry (GC‐MS) of larval head space odours analysis revealed the presence of four compounds: nonanal, decanal, tridecane and tetradecane in pupal and mature larval odour extracts. However, using synthetic compounds, behavioural assays showed that only decanal induced significant attraction, therefore, suggesting its role as a major component of the larval aggregation pheromone of GWM. Our findings reveal the involvement of volatile organic compounds in the aggregation behaviour of mature wax moth larvae and thereby offer prospects for the development of an odour‐baited in‐hive trapping management tool for wax moth larva.  相似文献   

9.
The arrival of a toxic invasive species may impose selection on local predators to avoid consuming it. Feeding responses may be modified via evolutionary changes to behaviour, or via phenotypic plasticity (e.g. learning, taste aversion). The recent arrival of cane toads (Bufo marinus) in the Northern Territory of Australia induced rapid aversion learning in a predatory marsupial (the common planigale, Planigale maculata). Here, we examine the responses of planigales to cane toads in north‐eastern Queensland, where they have been sympatric for over 60 years, to investigate whether planigale responses to cane toads have been modified by long‐term exposure. Responses to toads were broadly similar to those documented for toad‐naïve predators. Most Queensland planigales seized (21 of 22) and partially consumed (11 of 22) the first toad they were offered, but were likely to ignore toads in subsequent trials. However, unlike their toad‐naïve conspecifics from the Northern Territory, the Queensland planigales all survived ingestion of toad tissue without overt ill effects and continued to attack toads in a substantial proportion of subsequent trials. Our data suggest that (i) learning by these small predators is sufficiently rapid and effective that selection on behaviour has been weak; and (ii) physiological tolerance to toad toxins may be higher in planigales after 60 years (approximately 60 generations) of exposure to this toxic prey.  相似文献   

10.
Due to the ephemeral nature of carcasses they grow on, necrophagous blowfly larvae should minimize the time spent on the cadaver. This could be achieved by moving to high‐temperature areas. On that basis, we theorized that larvae placed in a heterogeneous thermal environment would move to the higher temperature that speed up their development. This study was designed to (1) test the ability of necrophagous larvae to orientate in a heterogeneous thermal environment, and (2) compare the temperatures selected by the larvae of three common blowfly species: Lucilia sericata (Meigen), Calliphora vomitoria (L.) and Calliphora vicina (Robineau‐Desvoidy). For this purpose, we designed a setup we named Thermograde. It consists of a food‐supplied linear thermal gradient that allows larvae to move, feed, and grow in close‐to‐real conditions, and to choose to stay at a given temperature. For each species and replication, 80 young third instars were placed on the thermal gradient. The location of larvae was observed after 19 h, with fifteen replications per species. The larvae of each species formed aggregations that were always located at the same temperatures, which were highly species‐specific: 33.3 ± 1.52 °C for L. sericata, 29.6 ± 1.63 °C for C. vomitoria, and 22.4 ± 1.55 °C for C. vicina. According to the literature, these value allows a fast development of the larvae, but not to reach the maximum development rate. As control experiments clearly demonstrate that larval distribution was not due to differences in food quality, we hypothesized that the local temperature selection by larvae may result from a trade‐off between development quality and duration. Indeed, temperature controls not only the development rate of the larvae, but also the quality of their growth and survival rate. Finally, results raise questions regarding the way larvae moved on the gradient and located their preferential temperature.  相似文献   

11.
Predation shortly after release is the main source of mortality among hatchery‐reared fish used to restore or enhance endangered salmonid populations. We found, that hatchery‐reared salmonid young originating from endangered stocks have weak innate responses to their natural fish predators. The ability to avoid predation in fish can be improved through social learning from experienced to naïve individuals. Huge benefits would be achieved, if social learning processes could be successfully applied on a large scale to enhance viability of hatchery fish prior to release into the wild. By using model predators together with chemical cues from real predators we tested if social learning could be used to train hatchery‐reared salmonid young to avoid fish predators. As there are clear differences in social behaviour among the salmonid species, we first examined whether these differences affect the probability and efficiency of learning anti‐predator skills from trained demonstrators. We compared anti‐predator responses of observers (fish trained by using experienced fish as demonstrators) with those of control fish, which had been ‘trained’ by untrained naïve conspecifics. We also examined how the efficiency of social learning depends on the ratio of experienced to naïve fish involved in social transmission trials. The results of these experiments will give guidelines how social learning could be utilized in developing hatchery scale training protocols.  相似文献   

12.
Insects have evolved amazing methods of defense to ward off enemies. Many aphids release cornicle secretions when attacked by predators and parasitoids. These se cretions contain an alarm pheromone that alerts other colony members of danger, thereby providing indirect fitness benefits to the releaser. In addition, contact with cornicle se cretions could also threaten an attacker and could provide direct fitness to the releaser. However, cornicle secretions may also be recruited as a kairomonal cue by aphid natural enemies. In this study, we investigated the effect of the cornicle droplet volatiles of the cabbage aphid, Brevicoryne brassicae (L.), on the hostsearching behavior of naive and experienced female Diaeretiella rapae (M'Intosh) parasitoids in olfactometer studies. In addition, we evaluated the role ofB. brassicae cornicle droplets on the oviposition prefer ence of the parasitoid in a twochoice bioassay. Naive females did not exhibit any preference between volatiles from aphids secreting cornicle droplets over nonsecreting aphids, while experienced parasitoids exploited the secretions in their host location. Experienced females were also able to choose volatiles from both secreting and nonsecreting aphids over clean air, while this ability was not observed in naive females. Although secretion of cornicle droplets did not influence the percentage of first attack in either naive or experienced females, the success of attack (i.e. resulting in a larva) was significantly different between secreting and nonsecreting aphids in the case of experienced parasitoids.  相似文献   

13.
The therapeutic benefits of dopamine (DA) agonists after traumatic brain injury (TBI) imply a role for DA systems in mediating functional deficits post‐TBI. We investigated how experimental TBI affects striatal dopamine systems using fast scan cyclic voltammetry (FSCV), western blot, and d‐amphetamine‐induced rotational behavior. Adult male Sprague–Dawley rats were injured by a controlled cortical impact (CCI) delivered unilaterally to the parietal cortex, or were naïve controls. Amphetamine‐induced rotational behavior was assessed 10 days post‐CCI. Fourteen days post‐CCI, animals were anesthetized and underwent FSCV with bilateral striatal carbon fiber microelectrode placement and stimulating electrode placement in the medial forebrain bundle (MFB). Evoked DA overflow was assessed in the striatum as the MFB was electrically stimulated at 60 Hz for 10 s. In 23% of injured animals, but no naïve animals, rotation was observed with amphetamine administration. Compared with naïves, striatal evoked DA overflow was lower for injured animals in the striatum ipsilateral to injury (p < 0.05). Injured animals exhibited a decrease in Vmax (52% of naïve, p < 0.05) for DA clearance in the hemisphere ipsilateral to injury compared with naïves. Dopamine transporter (DAT) expression was proportionally decreased in the striatum ipsilateral to injury compared with naïve animals (60% of naïve, p < 0.05), despite no injury‐related changes in vesicular monoamine transporter or D2 receptor expression (DRD2) in this region. Collectively, these data appear to confirm that the clinical efficacy of dopamine agonists in the treatment of TBI may be related to disruptions in the activity of subcortical dopamine systems.  相似文献   

14.
1. Trans‐generational immune priming is a phenomenon in insects in which the offspring of mothers previously challenged with a focal microbe exhibit a survival advantage when challenged with that microbe. 2. Maternal egg provisioning with immune factors such as antimicrobial peptides (AMPs) is widely believed to contribute to the primed phenotype. However, other ‘socially mediated’ environmental factors secreted or excreted by the mother and others in the community, such as the gut microbiota or pheromones, may also affect offspring immune phenotype. 3. The relative contributions of maternal egg provisioning and socially mediated environmental factors to the primed larval phenotype were assessed by performing a cross‐fostering survival experiment with Tribolium castaneum, in which the eggs of primed or naïve mothers were sterilised, treated with the frass of primed or naïve beetles, and challenged as larvae with the maternal pathogen, Bacillus thuringiensis. 4. Larvae from primed mothers showed greater survival than unprimed larvae, regardless of frass treatment; maternal treatment therefore showed a substantially greater contribution to larval priming than frass treatment. 5. Planned contrast tests to quantify the contributions of maternal and environmental matching revealed that maternal treatment mattered more for larvae exposed to primed, rather than unprimed, frass. This suggests that the effects of maternal egg provisioning may be exacerbated or mitigated by environmental factors. 6. Thus, although maternal egg provisioning plays a predominant role in producing the primed phenotype, environmental matching may matter for priming in some contexts.  相似文献   

15.
It is generally assumed that resistance to parasitism entails costs. Consequently, hosts evolving in the absence of parasites are predicted to invest less in costly resistance mechanisms than hosts consistently exposed to parasites. This prediction has, however, rarely been tested in natural populations. We studied the susceptibility of three naïve, three parasitized and one recently isolated Asellus aquaticus isopod populations to an acanthocephalan parasite. We found that parasitized populations, with the exception of the isopod population sympatric with the parasite strain used, were less susceptible to the parasite than the naïve populations. Exposed but uninfected (resistant) isopods from naïve populations, but not from parasitized populations, exhibited greater mortality than controls, implying that resistance entails survival costs primarily for naïve isopods. These results suggest that parasites can drive the evolution of host resistance in the wild, and that co‐existence with parasites may increase the cost‐effectiveness of defence mechanisms.  相似文献   

16.
Honeydew collectors of Formica pratensis taken from the nature (control) and laboratory-reared “naïve” ants, which had never met either “mature” workers or aphids and aphidophages, were observed during their interactions with various aphid enemies: adults and larvae of ladybirds and lacewings, and larvae of syrphid flies. The naïve ants were significantly more aggressive towards adults than towards larvae of aphidophages. More than 70% of the naïve ants treated ladybirds and lacewings as enemies at their first encounter and attacked them immediately without any prior antennation. The frequency of aggressive reactions (body jerking and bites) towards larvae was significantly higher in the control group, whereas the percentage of ants showing explorative behavior was significantly higher in the naïve ants. Overall, experience proved to be not important for displaying the key behavioral reactions towards adult ladybirds and lacewings underlying the protection of trophobionts from these natural enemies. However, accumulation of experience is assumed to play an important role in the recognition of aphidophage larvae and formation of aggressive behavior towards them.  相似文献   

17.
The ability of a native predator to adjust to a dangerously toxic invasive species is key to avoiding an ongoing suppression of the predator's population and the trophic cascade of effects that can result. Many species of anurophagous predators have suffered population declines due to the cane toad's (Rhinella marina: Bufonidae) invasion of Australia; these predators can be fatally poisoned from attempting to consume the toxic toad. We studied one such toad‐vulnerable predator, the yellow‐spotted monitor (Varanus panoptes: Varanidae), testing whether changes to the predator's feeding behaviour could explain how the species persists following toad invasion. Wild, free‐roaming lizards from (1) toad‐naïve and (2) toad‐exposed populations were offered non‐toxic native frogs and slightly toxic cane toads (with parotoid glands removed) in standardized feeding trials. Toad‐naïve lizards readily consumed both frogs and toads, with some lizards displaying overt signs of illness after consuming toads. In contrast, lizards from toad‐exposed populations consumed frogs but avoided toads. Repeated encounters with toads did not modify feeding responses by lizards from the toad‐naïve populations, suggesting that aversion learning is limited (but may nonetheless occur). Our results suggest that this vulnerable predator can adjust to toad invasion by developing an aversion to feeding on the toxic invader, but it remains unclear as to whether the lizard's toad‐aversion arises via adaptation or learning.  相似文献   

18.
The lady beetle Propylaea japonica (Thunberg) (Coleoptera: Coccinellidae) is an important predator of aphids in agroecosystems. The inundative release of coccinellid beetles can be an effective biological control strategy. An understanding of how biological control agents perceive and use stimuli from host plants is the key to successfully implement commercially produced predators. Here, we studied the relative role of visual and volatile cues. Dual‐choice assays using foraging‐naïve and foraging‐experienced P. japonica adults were conducted using cotton plants [Gossypium hirsutum L. (Malvaceae)] with or without infestation by the cotton aphid, Aphis gossypii (Glover) (Hemiptera: Aphididae). Overall, experienced beetles were more attracted than naïve beetles toward cues associated with aphid‐infested plants. Experienced beetles were also more responsive to olfactory cues compared with naïve beetles. Both foraging‐naïve and ‐experienced lady beetles integrate olfactory and visual cues from plants infested with aphids, with an apparently greater reliance on olfactory cues. The results suggest that foraging experience may increase prey location in P. japonica.  相似文献   

19.
We examined the role of B‐1 cells in protection against Toxoplasma gondii infection using B cell‐deficient mice (μMT mice). We found that primed but not naïve B‐1 cells from wild‐type C57BL/6 mice protected B cell‐deficient recipients from challenge infection. All μMT mice transferred with primed B‐1 cells survived more than 5 months after T. gondii infection, whereas 100% of μMT mice transferred with naïve B‐1 cells succumbed by 18 days after infection. Additionally, high expression of both T help (Th) 1‐ and Th2‐type cytokines and a high level of nitric oxide production were observed in T. gondii‐infected μMT mice transferred with primed B‐1 cells. Thus, it was clearly demonstrated that B‐1 cells play an important role in host protection against T. gondii infection in μMT mice.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号