首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The thermotolerance effect of heat hardening (also called short-term acclimation), knockdown resistance to high temperature (KRHT) with and without heat hardening and chill-coma recovery (CCR) are important phenotypes of thermal adaptation in insects and other organisms. Drosophila melanogaster from Denmark and Australia were previously selected for low and high KRHT, respectively. These flies were crossed to construct recombinant inbred lines (RIL). KRHT was higher in heat-hardened than in nonhardened RIL. We quantify the heat-hardening effect (HHE) as the ratio in KRHT between heat-hardened and nonhardened RIL. Composite interval mapping revealed a more complex genetic architecture for KRHT without heat-hardening than for KRHT in heat-hardened insects. Five quantitative trait loci (QTL) were found for KRHT, but only two of them were significant after heat hardening. KRHT and CCR showed trade-off associations for QTL both in the middle of chromosome 2 and the right arm of chromosome 3, which should be the result of either pleiotropy or linkage. The major QTL on chromosome 2 explained 18% and 27-33% of the phenotypic variance in CCR and KRHT in nonhardened flies, respectively, but its KRHT effects decreased by heat hardening. We discuss candidate loci for each QTL. One HHE-QTL was found in the region of small heat-shock protein genes. However, HHE-QTL explained only a small fraction of the phenotypic variance. Most heat-resistance QTL did not colocalize with CCR-QTL. Large-effect QTL for CCR and KRHT without hardening (basal thermotolerance) were consistent across continents, with apparent transgressive segregation for CCR. HHE (inducible thermotolerance) was not regulated by large-effect QTL.  相似文献   

2.
Complex activities require precise coordination of their components for successful action. The genetic basis underlying coordination of traits may range from relatively static pleiotropic associations to more flexible genetic associations that recombine in phenotypes under continuous selective modification by the environment. Successful flight in insects depends on the precise integration of numerous component physiological processes. Here we examine the genetic basis of two of its components, flight duration and rate. To study flight we created recombinant inbred populations from stocks of this laboratory known for their significantly longer duration flights. A heritable basis for these traits was found and determined to be positively correlated between sexes. Correlations of flight length with rate were negative within sexes, suggesting a trade-off, but were significant in males only. Composite interval mapping using the recombinant inbred (RI2) design was used to locate the QTLs for these traits and test for pleiotropy. Four QTLs affecting duration or wing beat rate were found on chromosomes II and III. Tests for pleiotropy showed some effects on traits of QTLs were common to both sexes while others were sex-specific. No QTL was pleiotropic for both traits, suggesting that correlations between flight duration and rate of wing beat are determined by a combination of linkage and environmental factors.  相似文献   

3.
Laboratory experiments on Drosophila have often demonstrated increased heritability for morphological and life‐history traits under environmental stress. We used parent–offspring comparisons to examine the impact of humidity levels on the heritability of a physiological trait, resistance to heat, measured as knockdown time at constant temperature. Drosophila melanogaster were reared under standard nonstressful conditions and heat‐shocked as adults at extreme high or low humidity. Mean knockdown time was decreased in the stressful dry environment, but there was a significant sex‐by‐treatment interaction: at low humidity, females were more heat resistant than males, whereas at high humidity, the situation was reversed. Phenotypic variability of knockdown time was also lower in the dry environment. The magnitude of genetic correlation between the sexes at high humidity indicated genetic variation for sexual dimorphism in heat resistance. Heritability estimates based on one‐parent–offspring regressions tended to be higher under desiccation stress, and this could be explained by decreased environmental variance of heat resistance at low humidity. There was no indication that the additive genetic variance and evolvability of heat resistance differed between the environments. The pattern of heritability estimates suggests that populations of D. melanogaster may have a greater potential for evolving higher thermal tolerance under arid conditions.  相似文献   

4.
In previous experiments we found that Drosophila melanogaster lines selected for increased adult desiccation resistance had increased resistance to other environmental stresses at the adult stage including starvation, intense 60Co-γ radiation and a toxic ethanol level. In further studies on these lines, we now show that selection did not alter resistance to desiccation and ethanol at the larval stage. As well as having a lower early fecundity, selected lines showed increased adult male longevity and increased viability at high larval densities compared with control lines. There were no changes in development time or mating success. The increased male longevity is consistent with the reduced metabolic rate of the selected lines.
A genetic correlation between resistance to different stresses was confirmed by an analysis of isofemale lines derived from a population founded by flies from a stress-resistant line and an unselected line. The results are consistent with the existence of genes segregating in natural populations conferring increased general stress resistance.  相似文献   

5.
The effect of stressful and nonstressful rearing temperatures on phenotypic variation of four quantitative characters (thorax length, wing length, number of sternopleural chaetae, number of arista branches) and on developmental stability (fluctuating asymmetry) of the three latter characters was estimated in two Drosophila species: Drosophila melanogaster and Drosophila buzzatii . In both species, a general trend for increasing of phenotypic variation and fluctuating asymmetry at stress temperatures was observed; in fluctuating asymmetry, this effect was more pronounced. An increase of phenotypic variation under stress was shown for all characters examined except sternopleural chaeta number in D. buzzatii . Comparison of species responses suggests that the increase of variation in D. melanogaster was somewhat higher than in D. buzzatii .  相似文献   

6.
Summary The aim of the experiment was to determine if the estimated genetic distance between two populations could be used to predict the amount of heterosis that would occur when they were crossed. Eight lines of known relatedness to each other were produced by eight generations of sib mating and sub-lining. This produced lines that varied in coefficient of coancestry from zero to 0.78. Fourteen reciprocal crosses of these lines were used to measure heterosis for larval viability and adult fecundity. Gene frequencies at six polymorphic enzyme loci were used to estimate the genetic distances between lines, which were then compared with the known degrees of coancestry. The estimated genetic differences were poorly correlated with the known coancestry coefficients (r=0.4), possibly due to the small number of loci typed. Also genetic distances were only about 1/3 of what was expected. Selection acting on blocks of genes linked to the enzyme loci probably prevented the expected increase in homozygosity. Coancestry coefficient was correlated with heterosis (r=0.44–0.71). This level of correlation implied differences in heterosis among parent lines with the same level of coancestry. This variability is expected if a small number of loci explain most of the heterosis. The average level of heterosis was less than expected after eight generations of sib mating. This is most likely due to selection opposing the increase in homozygosity caused by inbreeding. The combination of these two imperfect correlations resulted in no significant correlation between genetic distance estimated from markers and heterosis.  相似文献   

7.
Mutagenesis provides a powerful way of isolating genetic and physiological processes underlying complex traits, but this approach has rarely been applied to investigating water balance in insects. Here, we describe the isolation of a desiccation-resistant mutant of Drosophila melanogaster. Mutagenesis of a desiccation sensitive line resulted in the isolation of a mutant with two-fold higher resistance. The mutant was partially dominant and mapped to the second chromosome. Mutant flies showed lower rates of water loss, and had a higher water content, but showed no change in body mass, glycogen content, hemolymph volume or water content tolerated at death from desiccation. These physiological differences are contrasted to changes in lines of D. melanogaster mass selected for altered stress resistance. Isolation of this mutant provides an opportunity to identify a gene involved in water balance in insects.  相似文献   

8.
9.
10.
Suitable alterations in gene expression are believed to allow animals to survive drastic changes in environmental conditions. Drosophila melanogaster larvae cease eating and exit moist food to search for dry pupation sites after the foraging stage in what is known as the wandering stage. Although the behavioral change from foraging to wandering causes desiccation stress, the mechanism by which Drosophila larvae protect themselves from desiccation remains obscure. Here, we identified a gene, CG14686 (designated as Desiccate (Desi)), whose expression was elevated during the wandering stage. The Desi expression level was reversibly decreased by transferring wandering larvae to wet conditions and increased again by transferring them to dry conditions. Elevation of Desi expression was also observed in foraging larvae when they were placed in dry conditions. Desi encoded a 261-amino acid single-pass transmembrane protein with notable motifs, such as SH2 and PDZ domain-binding motifs and a cAMP-dependent protein kinase phosphorylation motif, in the cytoplasmic region, and its expression was observed mainly in the epidermal cells of the larval integuments. Overexpression of Desi slightly increased the larval resistance to desiccation stress during the second instar. Furthermore, Desi RNAi larvae lost more weight under dry conditions, and subsequently, their mortalities significantly increased compared with control larvae. Under dry conditions, consumption of carbohydrate was much higher in Desi RNAi larvae than control larvae. Based on these results, it is reasonable to conclude that Desi contributes to the resistance of Drosophila larvae to desiccation stress.  相似文献   

11.
12.
Replicate lines of Drosophila melanogaster and D. simulans originating from the same location in Australia were selected at two selection intensities (50%, 85% mortality) for increased resistance to desiccation, and scored for correlated responses to see if similar physiological changes were associated with the selection responses. Realized heritabilities were much higher in D. melanogaster. Selected lines of both species were more resistant than control lines to starvation and a toxic ethanol concentration. Both species also showed similar correlated responses for traits underlying the selection response: selected lines lost water at a slower rate and had reduced activity levels in a dry environment, but they did not differ in wet or dry body weight or in water content. For D. melanogaster, realized heritabilities for lines selected at 85% mortality were higher than for lines selected at 50% mortality, but there was no effect of selection intensity for D. simulans. Comparative studies of this nature may be useful in predicting the extent to which species can adapt to stress in the wild.  相似文献   

13.
Climate change poses a serious threat to the existence of many species. The combination of habitat fragmentation and increasing temperatures is of particular concern because it can alter demographic and population genetic processes, which may ultimately lead to extinction. Locomotion is very important in mitigating the negative impacts of these processes by upholding migration and contributing to random mating within and between populations. In the present study, a T‐maze, constituting a relatively complex laboratory assay, is used to investigate whether inbreeding affects the capacity to reach a food source in male Drosophila melanogaster Meigen 1830 (Diptera: Drosophilidae) reared at 20, 25 or 30 °C, respectively. The effects of inbreeding and crossbreeding are highly temperature‐specific. Strong heterosis for the ability to reach food in the maze is observed in flies developed and maintained at 30 °C, whereas inbred flies locate the food significantly faster than crossbreds when reared at 25 °C in four of six runs. No clear pattern is evident in flies reared at 20 °C. The results suggest that complex traits such as locomotor performance in a maze are highly informative in the evaluation and detection of inbreeding depression under different thermal conditions. The effect of inbreeding is most pronounced at high temperature, which is a characteristic of the conditions that many natural populations may have to face under climate change.  相似文献   

14.
Inbreeding depression is often intensified under environmental stress (i.e., inbreeding–stress interaction). Although the fitness consequences of this phenomenon are well‐described, underlying mechanisms such as an increased expression of deleterious alleles under stress, or a lower capacity for adaptive responses to stress with inbreeding, have rarely been investigated. We investigated a fitness component (egg‐to‐adult viability) and gene‐expression patterns using RNA‐seq analyses in noninbred control lines and in inbred lines of Drosophila melanogaster exposed to benign temperature or heat stress. We find little support for an increase in the cumulative expression of deleterious alleles under stress. Instead, inbred individuals had a reduced ability to induce an adaptive gene regulatory stress response compared to controls. The decrease in egg‐to‐adult viability due to stress was most pronounced in the lines with the largest deviation in the adaptive stress response (R2 = 0.48). Thus, we find strong evidence for a lower capacity of inbred individuals to respond by gene regulation to stress and that this is the main driver of inbreeding‐stress interactions. In comparison, the altered gene expression due to inbreeding at benign temperature showed no correlation with fitness and was pronounced in genomic regions experiencing the highest increase in homozygosity.  相似文献   

15.
16.
Abstract.  Low temperature and desiccation stress are thought to be mechanistically similar in insects, and several studies indicate that there is a degree of cross-tolerance between them, such that increased cold tolerance results in greater desiccation tolerance and vice versa . This assertion is tested at an evolutionary scale by examining basal cold tolerance, rapid cold-hardening (RCH) and chill coma recovery in replicate populations of Drosophila melanogaster selected for desiccation resistance (with controls for both selection and concomitant starvation) for over 50 generations. All of the populations display a RCH response, and there is no effect of selection regime on RCH or basal cold tolerance, although there are differences in basal cold tolerance between sampling dates, apparently related to inter-individual variation in development time. Flies selected for desiccation tolerance recover from chill coma slightly, but significantly, faster than control and starvation-control flies. These findings provide little support for cross-tolerance between survival of near-lethal cold and desiccation stress in D. melanogaster .  相似文献   

17.
18.
The ability to counter periods of low humidity is an important determinant of distribution range in Drosophila. Climate specialists with low physiological tolerance to desiccation stress are restricted to the tropics and may lack the ability to further increase resistance through evolution. Although the physiological adaptations to desiccation stress are well studied in Drosophila and other ectotherms, factors underlying evolutionary responses remain unknown because of a paucity of genetic data. We address this issue by mapping evolutionary shifts in D. melanogaster under selection for desiccation resistance. Genomic DNA from five independent replicate selected, and control lines were hybridized to high density Affymetrix Drosophila tiling arrays resulting in the detection of 691 single feature polymorphisms (SFPs) differing between the treatments. While randomly distributed throughout the genome, the SFPs formed specific clusters according to gene ontology. These included genes involved in ion transport and respiratory system development that provide candidates for evolutionary changes involving excretory and respiratory water balance. Changes to genes related to neuronal control of cell signaling, development, and gene regulation provide candidates to explore novel biological processes in stress resistance. Sequencing revealed the nucleotide shifts in a subset of the SFPs and highlighted larger regions of genomic diversity surrounding SFPs. The association between natural desiccation resistance and a 463-bp region of the 5' promoter region of the Dys gene undergoing allele frequency changes in response to selection in the experimental evolution lines was tested in an independent population from Coffs Harbour, Australia. The allele frequencies of 23 SNPs common to the two populations were inferred from the parents of the 10% most and 10% least resistant Coffs Harbour flies. The frequencies of the selected alleles were higher at all sites, with three sites significantly associated with the resistant Coffs Harbour flies. This study illustrates how rapid mapping can be used for discovering natural molecular variants associated with survival to low humidity and provides a wealth of candidate alleles to explore the genetic basis of physiological differences among resistant and susceptible Drosophila populations and species.  相似文献   

19.
Data from populations undergoing experimental evolution can be used to make comparisons between physiologically differentiated populations and to determine evolutionary trajectories. Comparisons of long-established laboratory populations of Drosophila melanogaster that are strongly differentiated with respect to desiccation resistance are used to test alternative hypotheses concerning the mechanisms that fruit flies use to survive bouts of extreme desiccation. This comparative study supports the hypothesis that, in at least one case, D. melanogaster can evolve increased resistance to desiccation by decreasing water loss rates and by increasing bulk water content but not by increasing metabolic water content or dehydration tolerance. While glycogen was involved in water storage, its primary role was in water binding, not the production of metabolic water. Measurement of the trajectories of these component mechanisms during selection for desiccation resistance is used to demonstrate that water loss rate quickly plateaus in response to selection, while water content continues to improve. This disparity reveals the value of studying evolutionary trajectories and the need for longer-term selection studies in evolutionary physiology.  相似文献   

20.
Larval performance of Helicoverpa zea (Boddie) (corn earworm) (Lepidoptera: Noctuidae) was examined on 240 recombinant inbred (RI) soybean, Glycine max (L.) Merrill, lines. These homozygous RI were derived from an intraspecific cross of genetically distant, non-resistant, parents, Minsoy from China and Noir 1 from Hungary. Based upon a genetic map of more than 500 molecular markers, each RI line presented a unique genotype composed of a mixture of different parental alleles. The RI lines exhibited transgressive segregation with respect to their defensive effects on H. zea, such that the range of RI phenotypes far exceeded that of the parents. Similar effects were observed on the soybean looper, Pseudoplusia includens (Walker) (Lepidoptera: Noctuidae). We identified several independent quantitative trait loci (QTLs) linked to molecular markers that were associated with H. zea larval development parameters. Two QTLs affected several different traits including larval weight and developmental rate; other QTLs affected only a single trait each, i.e., larval weight, pupal weight, developmental rate, nutritional efficiency or survival. The results demonstrate that the increased range of defensive effects among the segregant RI lines is due to recombination among several parental genes that together quantitatively control plant defensive traits.Several alternative responses by herbivores have been proposed relative to plant hybrid swarms, hybrid avoidance due to higher hybrid resistance than either parent, hybrid preference due to lower resistance than either parent, hybrid equivalency to one or the other parent, or hybrid intermediacy. Within this RI population, we observed all of the proposed responses by H. zea, as might be expected when defensive traits are controlled by several genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号