共查询到20条相似文献,搜索用时 0 毫秒
1.
Joe G. G. Vethanayagam Edie H. Green Richard C. Rose Ann M. Bode 《Free radical biology & medicine》1999,26(11-12):1591-1598
An efficient regeneration of vitamin C (ascorbate) from its oxidized byproduct, dehydroascorbate (DHAA), is necessary to maintain sufficient tissue levels of the reduced form of the vitamin. Additionally, the recycling may be more significant in mammals, such as guinea pigs and humans, who have lost the ability to synthesize ascorbate de novo, than it is in most other mammals who have retained the ability to synthesize the vitamin from glucose. Both a chemical and an enzymatic reduction of DHAA to ascorbate have been proposed. Several reports have appeared in which proteins, including thioltransferase, protein disulfide isomerase, and 3-alpha-hydroxysteroid dehydrogenase, characterized for other activities have been identified as having DHAA reductase activity in vitro. Whether these previously characterized proteins catalyze the reduction of DHAA in vivo is unclear. In the present study, a 66 kD protein was purified strictly on the basis of its DHAA-reductase activity and was identified as rat serum albumin. The protein was further characterized and results support the suggestion that serum albumin acts as an antioxidant and exerts a significant glutathione-dependent DHAA-reductase activity that may be important in the physiologic recycling of ascorbic acid. 相似文献
2.
为了明确非酶抗氧化物质抗坏血酸(AsA)、还原型谷胱甘肽(GSH)及相关代谢酶抗坏血酸过氧化物酶(APX)、谷胱甘肽还原酶(GR)在紫花苜蓿(Medicago sativa L.)对牛角花齿蓟马Odontothrips loti Haliday为害的抗性中的作用,测定了不同牛角花齿蓟马虫口密度下抗、感蓟马苜蓿无性系R-1、I-1的AsA、GSH含量及APX、GR活性的变化。结果表明:受牛角花齿蓟马为害后,R-1无性系在低虫口密度(1、3头/枝条)下,AsA、GSH含量和GR活性均上升,在高虫口密度(5、7头/枝条)下,AsA含量和GR活性先升高后下降,GSH含量上升后保持稳定;I-1无性系的AsA、GSH含量先升高后下降,GR活性在为害后期呈上升趋势;R-1、I-1无性系的APX活性均先上升后下降,但R-1无性系APX活性的上升速率及下降速率小于I-1无性系。说明AsA、GSH含量及APX、GR活性的升高可能是紫花苜蓿对牛角花齿蓟马诱导抗性的一种表现,但I-1无性系对蓟马为害的应激反应滞后于R-1无性系。在牛角花齿蓟马为害后期,R-1无性系体内的AsA、GSH含量及APX、GR活性仍处于较高水平,也说明了R-1无性系对牛角花齿蓟马为害的抗性较I-1无性系强。 相似文献
3.
Lee MK Park YB Moon SS Bok SH Kim DJ Ha TY Jeong TS Jeong KS Choi MS 《Chemico-biological interactions》2007,170(1):9-19
The purpose of the present study was to evaluate the in vivo efficacy of two cinnamic acid synthetic derivatives (allyl 3-[4-hydroxyphenyl]propanoate; HPP304, 1-naphthyl-methyl 3-[4-hydroxyphenyl]propanoate; HPP305) in high-cholesterol fed rats and compare their actions to that of cinnamic acid. Cinnamic acid and its synthetic derivatives were supplemented with a high-cholesterol diet for 42 days at a dose of 0.135 mmol/100 g of diet. The supplementation of HPP304 and HPP305 significantly lowered cholesterol and triglyceride levels in the plasma and liver with a simultaneous increase in the HDL-cholesterol concentration, whereas cinnamic acid only lowered the plasma cholesterol concentration. Cinnamic acid lowered hepatic HMG-CoA reductase activity in high-cholesterol fed rats, however, its synthetic derivatives (HPP304 and HPP305) did not affect HMG-CoA reductase activity compared to the control group. Instead, the HPP304 and HPP305 supplements significantly lowered hepatic acyl coenzyme A:cholesterol acyltransferase activity and increased the fecal bile acid. The SOD activity of the erythrocytes and liver was not different between the groups, however, the activities of CAT and GSH-Px, and the level of GSH in the erythrocytes were significantly higher in the HPP304 and HPP305 groups than in the control group. On the other hand, the activities of CAT and GSH-Px, and the level of malondialdehyde in the liver were significantly lower in the HPP304 and HPP305 groups. The antioxidant activities of these cinnamic acid synthetic derivatives were similar to the cinnamic acid in the high-cholesterol fed rats. In addition, HPP304 and HPP305 lowered amniotransferase activity in the plasma. These results suggest that two cinnamic acid synthetic derivatives (HPP304 and HPP305) exert lipid-lowering action and antioxidant properties without hepatotoxicity in high-cholesterol fed rats. 相似文献
4.
V. I. Kulinsky L. S. Kolesnichenko 《Biochemistry (Moscow) Supplemental Series B: Biomedical Chemistry》2009,3(2):129-144
During the last 10–15 years significant progress has been achieved in all directions of studies of the glutathione system. A series of new enzymes involved into metabolism of glutathione has been discovered. Many of these enzymes are polyfunctional and their new activities have been recognized. The enzymes interact with hormones and signal transduction systems. Significant progress has been achieved in the studies of intracellular, intercellular and inter-organ transport. The important achievement is employment of not only selective compounds-analyzers but also gene engineering methods for identification of new functions. 相似文献
5.
Fiona L. Goggin Carlos A. Avila Argelia Lorence 《BioEssays : news and reviews in molecular, cellular and developmental biology》2010,32(9):777-790
Analysis of a diverse cross‐sample of plant‐insect interactions suggests that the abundance of vitamin C (L ‐ascorbic acid, ascorbate or AsA) in plants influences their susceptibility to insect feeding. These effects may be mediated by AsAs roles as an essential dietary nutrient, as an antioxidant in the insect midgut, or as a substrate for plant‐derived ascorbate oxidase, which can lead to generation of toxic reactive oxygen species. Ascorbate can also influence the efficacy of plant defenses such as myrosinases and tannins, and alter insects' susceptibility to natural enemies. Conversely, herbivores appear to influence both de novo synthesis and redox cycling of AsA in their host plants, thereby potentially altering the nutritional value of crops and their susceptibility to pests. The recent development of genetically modified crops with enhanced AsA content provides both an impetus and a tool set for further studies on the role of AsA in plant‐insect interactions. 相似文献
6.
Many functions of mitochondrial GSH are significantly different from those of cytosolic GSH. This review considers the peculiarity of functions of mitochondrial GSH and enzymes of its metabolism, especially glutathione peroxidase 4, glutaredoxin 2, and kappa-glutathione transferase. 相似文献
7.
Glutathione contents and activity of glutathione-dependent enzymes in the body of insects inhabiting polluted areas depend on toxin kind, concentration and exposure time. Enzymatic response may be modified by gender, age, developmental stage and state of nutrition. Also, chronic exposure to metals in the environment may cause the selection of individuals resistant to some environmental toxins. To assess the degree of adaptation of Chorthippus brunneus to metal-polluted habitats, we measured glutathione contents and the activity of selected glutathione-dependent enzymes in the offspring of aging mothers which differed in time and intensity of exposure to metals in their habitats. We tested whether differences represent temporal shifts in tolerance range or were genetically preserved and inherited by future generations. We investigated insects from three populations. Two live in heavily metal-burdened areas, exposed to metals for 170 (Szopienice) or 50 years (Olkusz) and the third inhabits an unpolluted reference site (Pilica). The most important findings were age-by-site interactions for all biochemical analyses. Nymphs from Szopienice had lower glutathione contents and lower glutathione-dependent enzyme activity in comparison with nymphs from the reference site. This was especially distinct in nymphs hatched from eggs laid by young females. The offspring of aging females from Olkusz, in terms of glutathione contents and glutathione reductase activities, revealed similar patterns to those from the reference site. For the remaining parameters, enzyme activity patterns in nymphs from Olkusz were similar to those of nymphs from Szopienice. 相似文献
8.
James M. May Shalu Mendiratta Zhi-Chao Qu Erin Loggins 《Free radical biology & medicine》1999,26(11-12):1513-1523
The uptake, recycling, and function of ascorbic acid was evaluated in cultured U-937 monocytic cells. Dehydroascorbic acid, the two-electron oxidized form of the vitamin, was taken up on the glucose transporter and reduced to ascorbate to a much greater extent than ascorbate itself was accumulated by the cells. In contrast to dehydroascorbic acid, ascorbate entered the cells on a sodium- and energy-dependent transporter. Intracellular ascorbate enhanced the transfer of electrons across the cell membrane to extracellular ferricyanide. Rates of ascorbate-dependent ferricyanide reduction were saturable, fivefold greater than basal rates, and facilitated by intracellular recycling of ascorbate. Whereas reduction of dehydroascorbic acid concentrations above 400 microM consumed reduced glutathione (GSH), even severe GSH depletion by 1-chloro-2,4-dinitrobenzene was without effect on the ability of the cells to reduce concentrations of dehydroascorbic acid likely to be in the physiologic range (< 200 microM). Dialyzed cytosolic fractions from U-937 cells reduced dehydroascorbic acid to ascorbate in an NADPH-dependent manner that appeared due to thioredoxin reductase. However, thioredoxin reductase did not account for the bulk of dehydroascorbic acid reduction, since its activity was also decreased by treatment of intact cells with 1-chloro-2,4-dinitrobenzene. Thus, U-937 cells loaded with dehydroascorbic acid accumulate ascorbate against a concentration gradient via a mechanism that is not dependent on GSH or NADPH, and this ascorbate can serve as the major source of electrons for transfer across the plasma membrane to extracellular ferricyanide. 相似文献
9.
Kehinde Olajide Erinle Zhao Jiang Mengyuan Li Guangxia Su Bingbing Ma Yuheng Ma 《International journal of phytoremediation》2016,18(12):1187-1194
This research presented here, for the first time, elucidates the responses of several antioxidants in Pennisetum leaves exposed to varying concentrations of atrazine (0–200 mgkg?1). Pennisetum has been reported to be resistant to atrazine; however, its physiological response to high concentrations (≥50 mgkg?1) of atrazine is not well documented. The contents of reduced (AsA) and oxidized (DHA) ascorbate increased significantly with increase in atrazine concentration and exposure time; but the increase was more evident under higher (50 and 100 mgkg?1) atrazine concentrations. Increase in atrazine concentration to 200 mgkg?1 significantly decreased AsA, but increased DHA content, throughout the experiment. Seedlings treated with 200 mgkg?1 atrazine showed significantly lowest reduced glutathione (GSH) content, while oxidized glutathione (GSSG) was not significantly affected, after 68 d. Seedlings treated with 100 mgkg?1 atrazine showed increased glutathione-S-transferase (GST) activity after 48 d and 68 d, while treatment with 200 mgkg?1 atrazine significantly increased glutathione reductase (GR) after 58 d. This result suggests that Pennisetum may tolerate lower atrazine concentrations. However, higher concentrations (≥50 mg kg?1), which could have longer residency period in the soil, could induce more physiological damage to the plant. 相似文献
10.
温度胁迫对马铃薯叶片抗坏血酸代谢系统的影响 总被引:2,自引:0,他引:2
采用盆栽试验,研究了高温(40 ℃)和低温(5 ℃)胁迫下,马铃薯叶片抗坏血酸(AsA)含量、L-半乳糖-1,4-内酯脱氢酶(GalLDH)和脱氢抗坏血酸还原酶(DHAR)基因表达与相应酶活性,以及抗坏血酸过氧化物酶(APX)、单脱氢抗坏血酸还原酶(MDHAR)、谷胱甘肽还原酶(GR)活性及H2O2和丙二醛(MDA)含量的变化规律,探讨温度胁迫对AsA代谢系统的影响.结果表明:40 ℃下,AsA含量快速增加,在6 h达到最高值,最高值比对照增加43.7%,而后急速减少;5 ℃下,在9 h达到最高值,最高值比对照增加27.7%,而后也开始减少.GalLDH、DHAR、APX、MDHAR和GR活性在40 ℃和5 ℃下均呈先升后降的变化趋势;GalLDH和DHAR基因表达与其酶活性的变化趋势一致.温度胁迫下,H2O2和MDA含量均显著增加.说明在温度胁迫初期,马铃薯叶片以AsA为核心的抗氧化系统对抵御高温和低温胁迫发挥了重要作用,但是随着胁迫时间的延长,AsA代谢系统的抗氧化功能逐渐降低. 相似文献
11.
Eduardo Gusmão Pereira Marco Antonio Oliva Kacilda Naomi Kuki José Cambraia 《Trees - Structure and Function》2009,23(2):277-285
The effect of iron solid particulate matter (SPMFe) deposited onto soil and leaves on photosynthesis and oxidative stress was evaluated in Clusia hilariana, a CAM tropical tree of high occurrence in Brazilian restingas. Significant increases in iron content were found in plants
exposed to SPMFe applied onto leaf and soil surfaces. However, only the application of SPMFe on leaves of C. hilariana caused significant reductions in some evaluated characteristics such as photosynthetic rate, stomatal conductance, transpiration,
organic acid accumulation, potential quantum yield of PSII, and changes in daily CAM photosynthesis pattern. Increase in relative
membrane permeability and reduction in catalase and superoxide dismutase activities in the leaves of plants exposed to SPMFe also were observed; however, lipid peroxidation did not change. These responses seem to be due to the combination of physical
effects such as increase of leaf temperature, reduction in light absorption, obstruction of stomatal pores, and biochemical
effects triggered by oxidative stress. 相似文献
12.
Khatereh Hemmati Ali Ebadi Saeed Khomari Mohammad Sedghi 《Journal of Plant Interactions》2018,13(1):364-372
Water deficit is considered as a major limiting environmental factor for plant growth and yield. To ameliorate the adverse effects of water restriction, an experiment was conducted in the research field of Mohaghegh Ardabili University in two successive years (2014 and 2015). Foliar spraying of different concentration of epibrassinolide (EBL) (0, 10?8, and 10?7?M) and ascorbic acid (AsA) (0 and 10?mM) was carried out and water-stress trials included 50 and 100?mm evaporation from class A pan. Water stress significantly enhanced essential oil content, but reduced capitula yield and relative water content (RWC) of leaves. Water-stress damage ameliorated by foliar application of 10?mM AsA with 10?7?M EBL and the essential oil yield and antioxidant enzymes activity improved significantly. Enhancing of malondialdehyde (MDA) content and electrolyte leakage indicates that water-deficit stress caused oxidative damage to the membrane by enhancing hydrogen peroxide (H2O2) level. Combined-application of regulators significantly declined the amounts of H2O2, MDA, and electrolyte leakage under water stress. Antioxidant enzymes activity and also proline and protein content were enhanced by drought stress as well as regulators. Also, the application of EBL and AsA induced tolerance to water deficit and reduced the reactive oxygen species by increasing antioxidant enzymes activity and osmotic adjustment. 相似文献
13.
任何地方一年中的每一天都有一个特定的光照长度,日期和光周期变化存在固定的对应关系。昆虫在一定的日子滞育,自然也就是在特定的光照长度下滞育,但是并不意味着光周期必然就是滞育的主要诱因。分析光周期的几个重要特点,笔者认为光周期不一定是所有昆虫滞育开始及结束的最主要的或实质性的诱因。 相似文献
14.
Protection against oxygen radicals: an important defence mechanism studied in transgenic plants 总被引:36,自引:2,他引:36
Free radicals and other active derivatives of oxygen are inevitable by-products of biological redox reactions. Reduced oxygen species, such as hydrogen peroxide, the superoxide radical anion and hydroxyl radicals, inactivate enzymes and damage important cellular components. In addition, singlet oxygen, produced via formation of triplet state chlorophyll, is highly destructive. This oxygen species initiates lipid peroxidation, and produces lipid peroxy radicals and lipid hydroperoxides that are also very reactive. The increased production of toxic oxygen derivatives is considered to be a universal or common feature of stress conditions. Plants and other organisms have evolved a wide range of mechanisms to contend with this problem. The antioxidant defence system of the plant comprises a variety of antioxidant molecules and enzymes. Considerable interest has been focused on the ascorbate-glutathione cycle because it has a central role in protecting the chloroplasts and other cellular compartments from oxidative damage. It is clear that the capacity and activity of the antioxidative defence systems are important in limiting photo-oxidative damage and in destroying active oxygen species that are produced in excess of those normally required for signal transduction or metabolism. In our studies on this system, we became aware that the answers to many unresolved questions concerning the nature and regulation of the antioxidative defence system could not be obtained easily by either a purely physiological or purely biochemical approach. Transgenic plants offered us a means by which to achieve a more complete understanding of the roles of the enzymes involved in protection against stress of many types: environmental and man-made. The ability to engineer plants which express introduced genes at high levels provides an opportunity to manipulate the levels of these enzymes, and hence metabolism in vivo. Studies on transformed plants expressing increased activities of single enzymes of the antioxidative defence system indicate that it is possible to confer a degree of tolerence to stress by this means. However, attempts to increase stress resistance by simply increasing the activity of one of the antioxidant enzymes have not always been successful presumably because of the need for a balanced interaction of protective enzymes. The study of these transformed plants has allowed a more complete understanding of the roles of individual enzymes in metabolism. Protection against oxidative stress has become a feasible objective through the application of molecular genetic techniques in conjunction with a biochemical and physiological approach. 相似文献
15.
The aim of this study was to determine the effects of cold stress on antioxidant enzyme activities and examine protein oxidation and lipid peroxidation in various tissues (brain, liver, kidney, heart and stomach). Twenty male Wistar rats (3 months old) weighing 220 ± 20 g were used. The rats were randomly divided into two groups of ten: the control group and the cold stress group. Cold stress was applied to the animals by maintaining them in a cold room (5 °C) for 15 min/day for 15 days. Blood samples were taken for measuring plasma corticosterone levels. Tissues were obtained from each rat for measuring the antioxidant enzyme activities, protein oxidation and lipid peroxidation. Corticosterone levels were increased in the cold stress group. Copper, zinc superoxide dismutase activities were increased in the brains, livers and kidneys, whereas they decreased in the hearts and stomachs of rats in the cold stress group. Catalase activities were increased in the brains, livers, kidneys and hearts, whereas they decreased in the stomachs of rats in the cold stress group. Selenium-dependent glutathione peroxidase activities were increased in the brain, liver, heart and stomach. Reduced glutathione levels were decreased, while levels of protein carbonyl, conjugated diene and thiobarbituric-acid-reactive substances were increased in all tissues of the cold stress group. These results lead us to conclude that cold stress can disrupt the balance in an oxidant/antioxidant system and cause oxidative damage to several tissues by altering the enzymatic and non-enzymatic antioxidant status, protein oxidation and lipid peroxidation. 相似文献
16.
V. I. Kulinsky L. S. Kolesnichenko 《Biochemistry (Moscow) Supplemental Series B: Biomedical Chemistry》2009,3(3):211-220
The great importance of glutathione as a redox regulator and the reducing carrier has been recognized. There is clear necessity for subdivision of an independent mitochondrial glutathione subsystem. The data on specific features of glutathione metabolism in different organs are accumulated. There is convincing evidence for the involvement of the glutathione system into inflammation and immunity. Studies of the glutathione system are used in medicine for elucidation of pathogenesis of diseases and their diagnostics. 相似文献
17.
《Free radical research》2013,47(6):417-425
The antioxidant activity of saliva has been investigated in 28 apparently healthy individuals and seven dental patients with periodontal disease. The results show that the major aqueous antioxidant component of whole saliva is uric acid, with lesser contributions from ascorbic acid and albumin. All are present at lower concentrations than those found in the plasma water. The total antioxidant activity (TAA) of saliva correlates (r2 = 0.972) with the concentration of uric acid, which contributes more than 70% of the TAA. Stimulation of salivary flow is associated with increased production of antioxidants. The antioxidant potential of saliva does not appear to be compromised in patients with periodontal disease but this may relate to the antioxidant flow from the gingival crevicular fluid. 相似文献
18.
Suzanne Moore Karen A. C. Calder Nicholas J. Miller Catherine A. Rice-Evans 《Free radical research》1994,21(6):417-425
The antioxidant activity of saliva has been investigated in 28 apparently healthy individuals and seven dental patients with periodontal disease. The results show that the major aqueous antioxidant component of whole saliva is uric acid, with lesser contributions from ascorbic acid and albumin. All are present at lower concentrations than those found in the plasma water. The total antioxidant activity (TAA) of saliva correlates (r2 = 0.972) with the concentration of uric acid, which contributes more than 70% of the TAA. Stimulation of salivary flow is associated with increased production of antioxidants. The antioxidant potential of saliva does not appear to be compromised in patients with periodontal disease but this may relate to the antioxidant flow from the gingival crevicular fluid. 相似文献
19.
Enzymes associated with glycogen metabolism and glycerol synthesis in larvae of the Shonai ecotype of the rice stem borer, Chilo suppressalis, were investigated over the winter in 2000-2001. Glycerol content was scarcely detected in September and October, rapidly increased in November and December, peaked in January, and then decreased. Glycogen was converted to glycerol over the winter until February, and glycerol was reconverted to glycogen in March. The trehalose content remained constant over the winter. The activities of enzymes associated with glycerol synthesis changed with the season. Glycerol accumulation was accomplished by activation of glycogen phosphorylase, inhibition of fructose-1,6-bisphosphatase and pyruvate kinase, and activation of enzymes associated with glycerol synthesis, mainly glyceraldehyde-3-phosphatase and polyol dehydrogenase with glyceraldehyde activity. These changes led to a diversion of triose phosphates into the pathway of glycerol synthesis. However, activities of the two initial enzymes of the hexose monophosphate shunt were not activated and remained relatively constant, but high during the period of active glycerol synthesis. Both decreasing temperature in the field and the transition from the diapause to the post-diapause state may be responsible for the changes in activities of enzymes associated with glycerol synthesis. 相似文献
20.
Responses of antioxidative system to chilling stress in two rice cultivars differing in sensitivity 总被引:12,自引:0,他引:12
The responses of antioxidative system of rice to chilling were investigated in a tolerant cultivar, Xiangnuo-1, and a susceptible cultivar, IR-50. The electrolyte leakage and malondialdehyde content of Xiangnuo-1 were little affected by chilling treatment but those of IR-50 increased. Activities of suoperoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase, and ascorbic acid content of Xiangnuo-1 were remained high, while those of IR-50 decreased under chilling. The results indicated that higher activities of defense enzymes and higher content of antioxidant under stress were associated with tolerance to chilling. 相似文献