首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
A serologic survey for exposure to pathogens in Canada lynx (Lynx canadensis) in western North America was conducted. Samples from 215 lynx from six study areas were tested for antibodies to feline parvovirus (FPV), feline coronavirus, canine distemper virus, feline calicivirus, feline herpesvirus, Yersinia pestis, and Francisella tularensis. A subset of samples was tested for feline immunodeficiency virus; all were negative. For all other pathogens, evidence for exposure was found in at least one location. Serologic evidence for FPV was found in all six areas but was more common in southern populations. Also, more males than females showed evidence of exposure to FPV. Overall, prevalences were low and did not exceed 8% for any of the pathogens tested. This suggests that free-ranging lynx rarely encounter common feline pathogens.  相似文献   

2.
The Iberian lynx (Lynx pardinus) is the most endangered felid species in the world. Lynx populations have decreased dramatically in size and distribution in the last four decades, thus becoming increasingly vulnerable to catastrophic events such as epizooties. From 1989 to 2000, serum samples were obtained from 48 free-ranging lynx captured in the Doñana National Park (DNP, n?=?31) and mountains of Sierra Morena (SM, n?=?17) in southern Spain. Samples were tested for antibodies against Toxoplasma gondii, feline herpesvirus 1 (FHV-1), feline calicivirus (FCV), feline/canine parvovirus (FPV/CPV), feline coronavirus, feline immunodeficiency virus (FIV), feline leukaemia virus and canine distemper virus (CDV) and for FeLV p27 antigen, to document baseline exposure levels. Antibodies against T. gondii were detected in 44% of lynx, with a significantly greater prevalence in DNP (61%) than in SM (12%). In DNP, prevalence was significantly higher in adult (81%) than in juvenile and sub-adult (41%) lynx, but no such difference was observed in SM. Low prevalences (≤11%) of minimally positive titres were found for FHV-1, FCV and FPV/CPV. This, combined with the lack of evidence for exposure to CDV, FIV and FeLV, suggests that these lynx populations are naïve and might be vulnerable to a disease outbreak in the future. Because of the reduced size of lynx populations, the documented low level of genetic variation (particularly in the DNP population) coupled with the recently documented state of immune depletion in a majority of necropsied lynx, it is important to better understand the threat and potential impact that disease agents might pose for the conservation of this endangered species. Future surveillance programs must include possible disease reservoir hosts such as domestic cats and dogs and other wild carnivores.  相似文献   

3.
Twenty-five serum samples of 22 free-living European wildcats (Felis silvestris) captured from 1991 to 1993 in central Spain were tested for evidence of exposure to seven feline pathogens. All the wildcats but one (95.4%) presented evidence of contact with at least one of the agents (mean = 2.2). Contact with feline leukemia virus (FeLV) was detected in 81% of the wildcats (antibodies, 77%; antigen p27, 15%). Antibodies to feline calicivirus (FCV, 80%), feline herpesvirus (FHV, 20%), feline parvovirus (FPV, 18%), and Chlamydophila sp. (27%) were also detected. Analyses were negative for feline immunodeficiency virus and feline coronavirus. The probability of having antibodies to FPV was inversely related with the concentration of serum cholesterol and with a morphometric index of body condition. Similarity in the composition of antibodies against disease agents (number and identity of detected and undetected antibodies) was significantly higher in pairs of female wildcats than in pairs of males or heterosexual pairs, suggesting that females had a more homogeneous exposure to pathogens. Seroprevalence for FHV was higher in males than in females. Antibodies to FHV and Chlamydophila sp. were more frequent in winter than in other seasons. In addition, the mean similarity of the pathogen community between pairs of serum samples was higher if both wildcats were caught during the same season than if they were not. Mean similarity was lowest when serum samples obtained in winter were compared with those from spring or summer. The results suggest that some agents probably had a reservoir in domestic cats and may cause some undetected morbidity/mortality in the studied wildcat population, whereas others, such as FeLV and FCV, may be enzootic.  相似文献   

4.
Serum samples from 18 pumas (Puma concolor), one ocelot (Leopardus pardalis), and two little spotted cats (Leopardus tigrinus) collected from free-ranging animals in Brazil between 1998 and 2004 were tested by indirect immunofluorescence (IFA) for antibodies to feline herpesvirus 1 (FHV 1), calicivirus (FCV), coronavirus (FCoV), parvo-virus (FPV), Ehrlichia canis, Anaplasma pha-gocytophilum, and Bartonella henselae. Serum samples also were tested, by Western blot and ELISA, for feline leukemia virus (FeLV) specific antibodies and antigen, respectively, by Western blot for antibodies to feline immunodeficiency virus (FIV), and by indirect ELISA for antibodies to puma lentivirus (PLV). Antibodies to FHV 1, FCV, FCoV, FPV, FeLV, FIV, PLV or related viruses, and to B. henselae were detected. Furthermore, high-titered antibodies to E. canis or a closely related agent were detected in a puma for the first time.  相似文献   

5.
肉食兽细小病毒属于细小病毒科、细小病毒属中的一类病毒,能够感染多种动物,导致犬的出血性肠炎、幼龄犬的心肌炎、猫的白细胞减少、出血性肠炎、幼龄猫的共济失调症以及水貂的肠炎等多种疾病.血清学调查发现,由肉食兽细小病毒引起的疾病存在于世界各地.在我国,无论是家养还是野生动物均有细小病毒相关疫病的流行,对我国犬科和猫科动物的生存和健康构成巨大威胁(许树林等,1996;宋桂强等,2007).  相似文献   

6.
Serum samples from 14 lions (Panthera leo) from Queen Elizabeth National Park, Uganda, were collected during 1998 and 1999 to determine infectious disease exposure in this threatened population. Sera were analyzed for antibodies against feline immunodeficiency virus (FIV), feline calicivirus (FCV), feline herpesvirus 1 (feline rhinotracheitis: FHV1), feline/canine parvovirus (FPV/CPV), feline infectious peritonitis virus (feline coronavirus: FIPV), and canine distemper virus (CDV) or for the presence of feline leukemia virus (FeLV) antigens. Ten lions (71%) had antibodies against FIV, 11 (79%) had antibodies against CDV, 11 (79%) had antibodies against FCV, nine (64%) had antibodies against FHV1, and five (36%) had antibodies against FPV. Two of the 11 CDV-seropositive lions were subadults, indicating recent exposure of this population to CDV or a CDV-like virus. No lions had evidence of exposure to FeLV or FIPV. These results indicate that this endangered population has extensive exposure to common feline and canine viruses.  相似文献   

7.
Feline parvovirus (FPV) was isolated rather frequently from the peripheral blood mononuclear cells (PBMCs) of cats in northern Vietnam by coculturing with MYA-1 cells (an interleukin-2-dependent feline T lymphoblastoid cell line) or Crandell feline kidney (CRFK) cells (a feline renal cell line). Efficiency of virus isolation was higher in MYA-1 cells than in CRFK cells. Interestingly, among the 17 cats from which FPV was isolated, 9 cats were positive for virus neutralizing (VN) antibody against FPV, indicating that FPV infected PBMCs and was not eliminated from PBMCs even in the presence of VN antibodies in the cats.  相似文献   

8.
In order to determine the role of coyotes in the epidemiology of granulocytic and monocytic ehrlichial agents in California (USA), we tested 149 serum samples for antibodies against Ehrlichia equi, E. risticii, and E. canis, using an indirect immunofluorescent antibody test. Polymerase chain reaction (PCR) assay was used to survey for the presence of members of the E. phagocytophila genogroup, E. risticii and E. canis in blood samples of 95 coyotes. Sixty-eight (46%) samples were seropositive for E. equi, two (1%) for E. risticii and none of the samples had antibodies reactive to E. canis. Two and one coyote were positive for E. risticii and members of the E. phagocytophila genogroup by PCR assay, respectively. In contrast, the 95 samples were negative for E. canis by PCR. Ninety-five percent of the 68 E. equi seropositive coyotes and the one coyote PCR positive for members of the E. phagocytophila genogroup originated from a coastal area. However, the two E. risticii seropositive coyotes and the two coyotes PCR positive for E. risticii were from northern California. Sequence analysis of the three amplified PCR products revealed the agent to be similar in two coyotes to the sequences of E. risticii from horses originating from northern California and identical in one coyote to the agent of human granulocytic ehrlichiosis and E. equi from California. Thus, coyotes are exposed to granulocytic ehrlichiae and E. risticii and may play a role in the epidemiology of these ehrlichial agents in California.  相似文献   

9.
Serum samples from two leopard cats (Felis bengalensis) and four Formosan gem-faced civets (Paguma larvata taivana) in Taiwan, September 1995, and nine leopard cats in Vietnam, August and December 1997, were examined for the prevalence of antibodies against feline parvovirus, feline herpesvirus type 1, feline calicivirus and feline immunodeficiency virus. All civets and nine of 11 leopard cats were shown to have antibodies against feline parvovirus (FPV), and FPV's were isolated from mononuclear cells in the peripheral blood of the six leopard cats.  相似文献   

10.
猫科动物猫泛白细胞减少症血清抗体调查   总被引:7,自引:1,他引:6  
  相似文献   

11.
Wild Amur tigers (Panthera tigris altaica, n=44) from the Russian Far East were tested for antibodies to feline leukemia virus, feline corona virus (FCoV), feline immunodeficiency virus, feline parvovirus (FPV), canine distemper virus (CDV), Toxoplasma gondii, and Bartonella henselae. Antibodies to FCoV, CDV, FPV, and T. gondii were detected in 43, 15, 68, and 42% of tigers, respectively. No differences were detected in antibody prevalence estimates between tigers captured as part of a research program and those captured to mitigate human-tiger conflicts. Domestic dogs (Canis familiaris) were tested as a potential source for CDV; 16% were vaccinated against CDV and 58% of unvaccinated dogs were antibody positive for CDV. A high percentage of tigers were exposed to potential pathogens that could affect the survival of this species. We recommend continued monitoring of wild tigers throughout Asia, development of standardized sampling and postmortem examination procedures, and additional research to better understand potential domestic and wild animal sources for these pathogens.  相似文献   

12.
Serological survey of the Iriomote cat (Felis iriomotensis) in Japan   总被引:3,自引:0,他引:3  
The Iriomote cat (Felis iriomotensis) was first discovered on Iriomote Island in the Yaeyama Islands of Japan in 1965. Ten male and 11 female adult cats were captured during the 6 yr period from 1983 to 1988. These were examined for evidence of viral and mycoplasmal infections. Neither Mycoplasma sp. nor Ureaplasma sp. were detected in swab samples of oropharyngeal and urogenital regions. A foamy virus was isolated from the oropharyngeal swab of a female cat examined in 1988. Feline leukemia virus was not detected in any of the cats. All cats were negative for serum antibodies to feline panleukopenia virus, feline herpesvirus, feline immunodeficiency virus and rotavirus. Eleven of 19 (58%), 14 of 17 (82%) and 6 of 17 cats (35%) had serum antibodies against feline calicivirus, coronavirus and feline syncytium forming virus, respectively.  相似文献   

13.
A dual infection by feline panleukopenia virus (FPV) and feline calicivirus (FCV) in a 7 month-old cat is described. The animal developed a severe illness with depression, anorexia, fever, leucopoenia, nasal and ocular discharge and oral ulcers. Both FPV and FCV were isolated in cell cultures from a rectal swab and the presence of FCV was confimed by polymerase chain reaction. Antibodies to both the viruses were detected in the serum. The severity of the disease induced by the mixed viral infection highlights the need for intensifying FPV vaccination in cats.  相似文献   

14.
Cheetahs (Acinonyx jubatus) in captivity have unusually high morbidity and mortality from infectious diseases, a trait that could be an outcome of population homogeneity or the immunomodulating effects of chronic stress. Free-ranging Namibian cheetahs share ancestry with captive cheetahs, but their susceptibility to infectious diseases has not been investigated. The largest remaining population of free-ranging cheetahs resides on Namibian farmlands, where they share habitat with domestic dogs and cats known to carry viruses that affect cheetah health. To assess the extent to which free-ranging cheetahs are exposed to feline and canine viruses, sera from 81 free-ranging cheetahs sampled between 1992 and 1998 were evaluated for antibodies against canine distemper virus (CDV), feline coronavirus (feline infectious peritonitis virus; FCoV/ FIPV), feline herpesvirus 1 (FHV1), feline panleukopenia virus (FPV), feline immunodeficiency virus (FIV), and feline calicivirus (FCV) and for feline leukemia virus (FeLV) antigens. Antibodies against CDV, FCoV/FIPV, FHV1, FPV, and FCV were detected in 24, 29, 12, 48, and 65% of the free-ranging population, respectively, although no evidence of viral disease was present in any animal at the time of sample collection. Neither FIV antibodies nor FeLV antigens were present in any free-ranging cheetah tested. Temporal variation in FCoV/FIPV seroprevalence during the study period suggested that this virus is not endemic in the free-ranging population. Antibodies against CDV were detected in cheetahs of all ages sampled between 1995 and 1998, suggesting the occurrence of an epidemic in Namibia during the time when CDV swept through other parts of sub-Saharan Africa. This evidence in free-ranging Namibian cheetahs of exposure to viruses that cause severe disease in captive cheetahs should direct future guidelines for translocations, including quarantine of seropositive cheetahs and preventing contact between cheetahs and domestic pets.  相似文献   

15.
Canine parvovirus (CPV) emerged as an apparently new virus during the mid-1970s. The origin of CPV is unknown, but a variation from feline panleukopenia virus (FPV) or another closely related parvovirus is suspected. Here we examine the in vitro and in vivo canine and feline host ranges of CPV and FPV. Examination of three canine and six feline cell lines and mitogen-stimulated canine and feline peripheral blood lymphocytes revealed that CPV replicates in both canine and feline cells, whereas FPV replicates efficiently only in feline cells. The in vivo host ranges were unexpectedly complex and distinct from the in vitro host ranges. Inoculation of dogs with FPV revealed efficient replication in the thymus and, to some degree, in the bone marrow, as shown by virus isolation, viral DNA recovery, and Southern blotting and by strand-specific in situ hybridization. FPV replication could not be demonstrated in mesenteric lymph nodes or in the small intestine, which are important target tissues in CPV infection. Although CPV replicated well in all the feline cells tested in vitro, it did not replicate in any tissue of cats after intramuscular or intravenous inoculation. These results indicate that these viruses have complex and overlapping host ranges and that distinct tissue tropisms exist in the homologous and heterologous hosts.  相似文献   

16.
The tick Ixodes ricinus has been recorded in most Italian regions especially in thermo-mesophilous woods and shrubby habitats where the relative humidity allow the tick to complete its 3 year developmental cycle, as predicted for the European climatic ranges. This tick acts both as vector and reservoir for a series of wildlife zoonotic pathogens, especially the agents of Lyme diseases, Tick borne encephalitis and Human Granulocytic Ehrlichiosis, which are emerging in most of Europe. To assess the spatial distribution of these pathogens and the infection risk for humans and animals within the territory of the Province of Trento, we carried out a long term study using a combination of eco-epidemiological surveys and mathematical modelling. An extensive tick collection with a GIS based habitat suitability analysis allowed us to identify the areas where tick occurs at various density. To identify the areas with higher infection risk, we estimated the values of R0 for Borrelia burgdorferi s.l., TBE virus and Anaplasma phagocytophila under different ecological conditions. We assessed the infection prevalence in the vector and in the wildlife reservoir species that play a central role in the persistence of these infections, ie the small mammals A. flavicollis and C. glareolus. We also considered the double effect of roe deer (Capreolus capreolus) which act as reservoir for A. phagocytophila but is an incompetent host for B. burgdorferi and TBE virus, thus reducing the infection prevalence in ticks of these last two pathogens. Infection prevalence with B. burgdorferi and A. phagocytophila in the vector was assessed by PCR screening 1212 I. ricinus nymphs collected by dragging in six main study areas during 2002. The mean infection prevalence recorded was 1.32% for B. burgdorferi s.l. and 9.84% for A. phagocytophila. Infection prevalence in nymphs with TBE virus, as assessed in a previous study was 0.03%. Infection prevalence in rodents was assessed by screening (with ELISA and PCR) tissues and blood samples collected from 367 rodent individuals trapped extensively during 2002 within 6 main study areas. A. flavicollis (N=238) was found to be infected with all three pathogens investigated, with infection prevalence ranging from 3.3% for TBE virus to 11.7% for A. phagocytophila, and 16.6% with B. burgdorferi s.l. C. glareolus (N=108) showed an infection prevalence of 6.5% with A. phagocytophila and 12.7% with B. burgdorferi s.l., while no individuals were infected with TBE virus. We also screened 98 spleen samples collected from roe deer with PCR, resulting in a mean prevalence of infection with A. phagocytophila of 19.8%. Using a deterministic model we explored the condition for diseases persistence under different rodent and roe deer densities. R0 values resulted largely above 1 for B. burgdorferi s.l. in the vast majority of the areas classified as suitable for I. ricinus occurrence in Trentino, while the condition for TBE persistence appeared to be more restricted by a combination of climatic condition and host densities.  相似文献   

17.
Few data are available on the prevalence of feline viruses in European wildcats (Felis silvestris). Previous surveys have indicated that wildcats may be infected with the common viruses of domestic cats, apart from feline immunodeficiency virus (FIV). In the present study, 50 wildcats trapped throughout Scotland (UK) between August 1992 and January 1997 were tested for evidence of viral infection. All were negative for FIV by several serological or virological methods. By contrast, 10% of the cats were positive for feline leukemia virus (FeLV) antigen and infectious virus was isolated from 13% of a smaller subset. Of the wildcats tested for respiratory viruses, 25% yielded feline calicivirus (FCV) and although no feline herpesvirus was isolated, 16% of the samples had neutralizing antibodies to this virus. Antibodies to feline coronavirus (FCoV) were found in 6% of samples. Feline foamy virus (FFV) was an incidental finding in 33% of samples tested. This study confirms that wildcats in Scotland are commonly infected with the major viruses of the domestic cat, except for FIV.  相似文献   

18.
Canine parvovirus (CPV) and feline panleukopenia virus (FPV) capsids bind to the transferrin receptors (TfRs) of their hosts and use these receptors to infect cells. The binding is partially host specific, as FPV binds only to the feline TfR, while CPV binds to both the canine and feline TfRs. The host-specific binding is controlled by a combination of residues within a raised region of the capsid. To define the TfR structures that interact with the virus, we altered the apical domain of the feline or canine TfR or prepared chimeras of these receptors and tested the altered receptors for binding to FPV or CPV capsids. Most changes in the apical domain of the feline TfR did not affect binding, but replacing Leu221 with Ser or Asp prevented receptor binding to either FPV or CPV capsids, while replacing Leu221 with Lys resulted in a receptor that bound only to CPV but not to FPV. Analysis of recombinants of the feline and canine TfRs showed that sequences controlling CPV-specific binding were within the apical domain and that more than one difference between these receptors determined the CPV-specific binding of the canine TfR. Single changes within the canine TfR which removed a single amino acid insertion or which eliminated a glycosylation site gave that receptor the expanded ability to bind to FPV and CPV. In some cases, binding of capsids to mutant receptors did not result in infection, suggesting a structural role for the receptor in cell infection by the viruses.  相似文献   

19.
虎源猫泛白细胞减少症病毒的分离鉴定   总被引:7,自引:0,他引:7  
利用细胞培养方法从中国某虎园送检的腹泻虎肠内容物中分离出1 株细小病毒(TPV/ HT - 69),经系统的形态学、理化学、血清学试验、人工感染试验、PCR 扩增和VP2 基因序列分析,符合猫泛白细胞减少症病毒特征,证明该毒株为猫泛白细胞减少症病毒强毒。  相似文献   

20.
Serological and genetic material collected over 15 years (1990-2004) from 207 cougars (Puma concolor) in four populations in the Rocky Mountains were examined for evidence of current or prior exposure to feline immunodeficiency virus (FIV), feline parvovirus (FPV), feline coronavirus (FCoV), feline calicivirus (FCV), canine distemper virus (CDV), feline herpesvirus (FHV), and Yersinia pestis. Serologic data were analyzed for annual variation in seroconversions to assess whether these pathogens are epidemic or endemic in cougars, and to determine whether family membership, age, sex, or location influence risk of exposure. FIV and FPV were clearly endemic in the studied populations, whereas exposure to FCoV, FCV, CDV, and Y. pestis was more sporadic. No evidence was found for FHV. Age was the most consistent predictor of increased exposure risk, often with no other important factors emerging. Evidence for transmission within family groups was limited to FIV and FCoV, whereas some indication for host sex affecting exposure probability was found for FIV and Y. pestis. Overall, cougar populations exhibited few differences in terms of pathogen presence and prevalence, suggesting the presence of similar risk factors throughout the study region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号