首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Escape from the host erythrocyte by the invasive stage of the malaria parasite Plasmodium falciparum is a fundamental step in the pathogenesis of malaria of which little is known. Upon merozoite invasion of the host cell, the parasite becomes enclosed within a parasitophorous vacuole, the compartment in which the parasite undergoes growth followed by asexual division to produce 16-32 daughter merozoites. These daughter cells are released upon parasitophorous vacuole and erythrocyte membrane rupture. To examine the process of merozoite release, we used P. falciparum lines expressing green fluorescent protein-chimeric proteins targeted to the compartments from which merozoites must exit: the parasitophorous vacuole and the host erythrocyte cytosol. This allowed visualization of merozoite release in live parasites. Herein we provide the first evidence in live, untreated cells that merozoite release involves a primary rupture of the parasitophorous vacuole membrane followed by a secondary rupture of the erythrocyte plasma membrane. We have confirmed, with the use of immunoelectron microscopy, that parasitophorous vacuole membrane rupture occurs before erythrocyte plasma membrane rupture in untransfected wild-type parasites. We have also demonstrated selective inhibition of each step in this two-step process of exit using different protease inhibitors, implicating the involvement of distinct proteases in each of these steps. This will facilitate the identification of the parasite and host molecules involved in merozoite release.  相似文献   

2.
The process of merozoite release in Plasmodium falciparum involves rupture of the parasitophorous vacuole membrane and erythrocyte plasma membrane. Through the use of protease inhibitors that halt the merozoite release, a number of parasite proteases, especially serine, aspartic, and cysteine proteases, have been implicated in the schizont rupture. To understand the precise role of cysteine proteases in the merozoite release, in the present study, we treated P. falciparum cultures with siRNAs corresponding to falcipain-1, falcipain-2, and falcipain-3, the three papain-family proteases of the parasite. Treatment of malaria parasites with either of the falcipain siRNAs considerably reduced parasite growth. Morphological examination of the siRNA treated parasite cultures revealed that most of the parasites in falcipain-2 siRNA treated cultures were arrested at schizont stage. Analysis of a transgenic P. falciparum line expressing chimeric-GFP upon treatment with falcipain-2 siRNA revealed block in the rupture of erythrocyte membrane at the time of merozoite egression. These results suggest that falcipain-2 is an important parasitic protease that participates in hemoglobin degradation and in the merozoite release.  相似文献   

3.
Studies of malaria proteases have focused on two general groups, corresponding to activities specific to malaria parasites: (1) proteases involved in hemoglobin degradation which are active in the food vacuole and which exhibit optimal activity at low pH; and (2) proteases specific to schizonts and/or merozoites which are involved in merozoite maturation and red blood cell invasion and which exhibit optimal activity at neutral pH. In this paper, Catherine Braun Breton and Luis H. Pereira da Silva will focus on those activities necessary for the release of infectious merozoites and the entry of the parasite into its host cell.  相似文献   

4.
By studying the inactivation of malaria parasite culture by cysteine protease inhibition using confocal microscopy of living cells and electron microscopy of high-pressure frozen and freeze-substituted cells, we report the precise step in the release of malaria parasites from erythrocytes that is likely regulated by cysteine proteases: the opening of the erythrocyte membrane, liberating parasites for the next round of infection. Inhibition of cysteine proteases within the last few minutes of cycle does not affect rupture of the parasitophorus vacuole but irreversibly blocks the subsequent rupture of the host cell membrane, locking in resident parasites, which die within a few hours of captivity. This irreversible inactivation of mature parasites inside host cells makes plasmodial cysteine proteases attractive targets for antimalarials, as parasite-specific cysteine protease inhibitors may significantly augment multi-target drug cocktails.  相似文献   

5.
Upon infection and development within human erythrocytes, P. falciparum induces alterations to the infected RBC morphology and bio-mechanical properties to eventually rupture the host cells through parasitic and host derived proteases of cysteine and serine families. We used previously reported broad-spectrum inhibitors (E64d, EGTA-AM and chymostatin) to inhibit these proteases and impede rupture to analyze mechanical signatures associated with parasite escape. Treatment of late-stage iRBCs with E64d and EGTA-AM prevented rupture, resulted in no major RBC cytoskeletal reconfiguration but altered schizont morphology followed by dramatic re-distribution of three-dimensional refractive index (3D-RI) within the iRBC. These phenotypes demonstrated several-fold increased iRBC membrane flickering. In contrast, chymostatin treatment showed no 3D-RI changes and caused elevated fluctuations solely within the parasitophorous vacuole. We show that E64d and EGTA-AM supported PV breakdown and the resulting elevated fluctuations followed non-Gaussian pattern that resulted from direct merozoite impingement against the iRBC membrane. Optical trapping experiments highlighted reduced deformability of the iRBC membranes upon rupture-arrest, more specifically in the treatments that facilitated PV breakdown. Taken together, our experiments provide novel mechanistic interpretations on the role of parasitophorous vacuole in maintaining the spherical schizont morphology, the impact of PV breakdown on iRBC membrane fluctuations leading to eventual parasite escape and the evolution of membrane stiffness properties of host cells in which merozoites were irreversibly trapped, recourse to protease inhibitors. These findings provide a comprehensive, previously unavailable, body of information on the combined effects of biochemical and biophysical factors on parasite egress from iRBCs.  相似文献   

6.
7.
Plasmodium parasites must control cysteine protease activity that is critical for hepatocyte invasion by sporozoites, liver stage development, host cell survival and merozoite liberation. Here we show that exoerythrocytic P. berghei parasites express a potent cysteine protease inhibitor (PbICP, P. berghei inhibitor of cysteine proteases). We provide evidence that it has an important function in sporozoite invasion and is capable of blocking hepatocyte cell death. Pre-incubation with specific anti-PbICP antiserum significantly decreased the ability of sporozoites to infect hepatocytes and expression of PbICP in mammalian cells protects them against peroxide- and camptothecin-induced cell death. PbICP is secreted by sporozoites prior to and after hepatocyte invasion, localizes to the parasitophorous vacuole as well as to the parasite cytoplasm in the schizont stage and is released into the host cell cytoplasm at the end of the liver stage. Like its homolog falstatin/PfICP in P. falciparum, PbICP consists of a classical N-terminal signal peptide, a long N-terminal extension region and a chagasin-like C-terminal domain. In exoerythrocytic parasites, PbICP is posttranslationally processed, leading to liberation of the C-terminal chagasin-like domain. Biochemical analysis has revealed that both full-length PbICP and the truncated C-terminal domain are very potent inhibitors of cathepsin L-like host and parasite cysteine proteases. The results presented in this study suggest that the inhibitor plays an important role in sporozoite invasion of host cells and in parasite survival during liver stage development by inhibiting host cell proteases involved in programmed cell death.  相似文献   

8.
Plasmodium falciparum is an obligate intracellular pathogen responsible for worldwide morbidity and mortality. This parasite establishes a parasitophorous vacuole within infected red blood cells wherein it differentiates into multiple daughter cells that must rupture their host cells to continue another infectious cycle. Using atomic force microscopy, we establish that progressive macrostructural changes occur to the host cell cytoskeleton during the last 15 h of the erythrocytic life cycle. We used a comparative proteomics approach to determine changes in the membrane proteome of infected red blood cells during the final steps of parasite development that lead to egress. Mass spectrometry-based analysis comparing the red blood cell membrane proteome in uninfected red blood cells to that of infected red blood cells and postrupture vesicles highlighted two temporally distinct events; (Hay, S. I., et al. (2009). A world malaria map: Plasmodium falciparum endemicity in 2007. PLoS Med. 6, e1000048) the striking loss of cytoskeletal adaptor proteins that are part of the junctional complex, including α/β-adducin and tropomyosin, correlating temporally with the emergence of large holes in the cytoskeleton seen by AFM as early ~35 h postinvasion, and (Maier, A. G., et al. (2008) Exported proteins required for virulence and rigidity of Plasmodium falciparum-infected human erythrocytes. Cell 134, 48-61) large-scale proteolysis of the cytoskeleton during rupture ~48 h postinvasion, mediated by host calpain-1. We thus propose a sequential mechanism whereby parasites first remove a selected set of cytoskeletal adaptor proteins to weaken the host membrane and then use host calpain-1 to dismantle the remaining cytoskeleton, leading to red blood cell membrane collapse and parasite release.  相似文献   

9.
The most virulent form of malaria is caused by waves of replication of blood stages of the protozoan pathogen Plasmodium falciparum. The parasite divides within an intraerythrocytic parasitophorous vacuole until rupture of the vacuole and host-cell membranes releases merozoites that invade fresh erythrocytes to repeat the cycle. Despite the importance of merozoite egress for disease progression, none of the molecular factors involved are known. We report that, just prior to egress, an essential serine protease called PfSUB1 is discharged from previously unrecognized parasite organelles (termed exonemes) into the parasitophorous vacuole space. There, PfSUB1 mediates the proteolytic maturation of at least two essential members of another enzyme family called SERA. Pharmacological blockade of PfSUB1 inhibits egress and ablates the invasive capacity of released merozoites. Our findings reveal the presence in the malarial parasitophorous vacuole of a regulated, PfSUB1-mediated proteolytic processing event required for release of viable parasites from the host erythrocyte.  相似文献   

10.
Nyalwidhe J  Lingelbach K 《Proteomics》2006,6(5):1563-1573
After invasion of erythrocytes, the human malaria parasite Plasmodium falciparum resides within a parasitophorous vacuole (PV) which forms an interface between the host cell cytosol and the parasite surface. This vacuole protects the parasite from potentially harmful substances, but allows access of essential nutrients to the parasite. Furthermore, the vacuole acts as a transit compartment for parasite proteins en route to the host cell cytoplasm. Recently we developed a strategy to biotin label soluble proteins of the PV. Here, we have paired this strategy with a high-throughput MALDI-TOF-MS analysis to identify 27 vacuolar proteins. These proteins fall into the following main classes: chaperones, proteases, and metabolic enzymes, consistent with the expected functions of the vacuole. These proteins are likely to be involved in several processes including nutrient acquisition from the host cytosol, protein sorting within the vacuole, and release of parasites at the end of the intraerythrocytic cycle.  相似文献   

11.
Summary Intracellular sporozoan parasites invade the host cell through the invagination of the plasma membrane of the host and a vacuole is formed which accommodates the entering parasite. The vacuole may disappear and the invaginated membrane of the host then becomes closely apposed to that of the parasite's own membrane. As a result the parasite is covered by two membranes. Members of the class Piroplasmea differ from other Sporozoa in that their trophozoites are covered by a single membrane. By screening numerous sections of intraerythrocytic Babesia microti belonging to the class Piroplasmea, it was found that merozoites of Babesia enter the erythrocytes of hamsters in the same way as those of other Sporozoa. When a merozoite touches the red blood cell with its anterior end it becomes attached to the membrane of the host, which starts to invaginate and a parasitophorous vacuole is formed. The vacuolar space disappears rapidly and the membrane of the vacuole and that of the parasite become closely adjacent. At this stage the parasite is surrounded by two plasma membranes. The outer membrane derived from the invaginated host membrane disintegrates quickly and the parasite is left with a single membrane throughout its life span.Supported by Grant AI 08989 from the U.S. Public Health Service. The excellent technical assistance of Ms. Renata Klatt is gratefully acknowledged  相似文献   

12.
Egress of Plasmodium falciparum merozoites from host erythrocytes is a critical step in multiplication of blood‐stage parasites. A cascade of proteolytic events plays a major role in degradation of membranes leading to egress of merozoites. However, the signals that regulate the temporal activation and/or secretion of proteases upon maturation of merozoites in intra‐erythrocytic schizonts remain unclear. Here, we have tested the role of intracellular Ca2+ in regulation of egress of P. falciparum merozoites from schizonts. A sharp rise in intracellular Ca2+ just before egress, observed by time‐lapse video microscopy, suggested a role for intracellular Ca2+ in this process. Chelation of intracellular Ca2+ with chelators such as BAPTA‐AM or inhibition of Ca2+ release from intracellular stores with a phospholipase C (PLC) inhibitor blocks merozoite egress. Interestingly, chelation of intracellular Ca2+ in schizonts was also found to block the discharge of a key protease PfSUB1 (subtilisin‐like protease 1) from exonemes of P. falciparum merozoites to parasitophorous vacuole (PV). This leads to inhibition of processing of PfSERA5 (serine repeat antigen 5) and a block in parasitophorous vacuolar membrane (PVM) rupture and merozoite egress. A complete understanding of the steps regulating egress of P. falciparum merozoites may provide novel targets for development of drugs that block egress and limit parasite growth.  相似文献   

13.
Invasion of red blood cells by the malaria merozoite is an essential step in the life cycle of this obligate intracellular pathogen. The molecular details of invasion are only recently becoming understood, largely through studies in related apicomplexan parasites such as Toxoplasma. Protease activity is required for successful invasion to disengage interactions between parasite adhesins and host cell receptors. Shedding of at least two essential surface proteins from the merozoite is thought to occur continuously during invasion as the parasite moves into the nascent parasitophorous vacuole. This shedding is performed by way of juxtamembrane cleavage and is mediated by a sheddase, which probably belongs to the subtilisin-like superfamily. Recent revelations have shown that transmembrane adhesins that are secreted onto the Toxoplasma tachyzoite surface and capped to its posterior pole are shed by way of cleavage within their transmembrane domains. A family of intramembrane serine proteases called rhomboids have now been identified within Apicomplexa, and one Toxoplasma rhomboid has been localized to the posterior end of the parasite. This supports their role in capping proteolysis. Proteases involved in invasion constitute potential targets for the development of new protease inhibitor-based drugs.  相似文献   

14.
The protozoan parasite Plasmodium is transmitted by female Anopheles mosquitoes and undergoes obligatory development within a parasitophorous vacuole in hepatocytes before it is released into the bloodstream. The transition to the blood stage was previously shown to involve the packaging of exoerythrocytic merozoites into membrane-surrounded vesicles, called merosomes, which are delivered directly into liver sinusoids. However, it was unclear whether the membrane of these merosomes was derived from the parasite membrane, the parasitophorous vacuole membrane or the host cell membrane. This knowledge is required to determine how phagocytes will be directed against merosomes. Here, we fluorescently label the candidate membranes and use live cell imaging to show that the merosome membrane derives from the host cell membrane. We also demonstrate that proteins in the host cell membrane are lost during merozoite liberation from the parasitophorous vacuole. Immediately after the breakdown of the parasitophorous vacuole membrane, the host cell mitochondria begin to degenerate and protein biosynthesis arrests. The intact host cell plasma membrane surrounding merosomes allows Plasmodium to mask itself from the host immune system and bypass the numerous Kupffer cells on its way into the bloodstream. This represents an effective strategy for evading host defenses before establishing a blood stage infection.  相似文献   

15.
16.
The blood stage malaria parasite, the merozoite, has a small window of opportunity during which it must successfully target and invade a human erythrocyte. The process of invasion is nonetheless remarkably rapid. To date, mechanistic models of invasion have focused predominantly on the parasite actomyosin motor contribution to the energetics of entry. Here, we have conducted a numerical analysis using dimensions for an archetypal merozoite to predict the respective contributions of the host-parasite interactions to invasion, in particular the role of membrane wrapping. Our theoretical modeling demonstrates that erythrocyte membrane wrapping alone, as a function of merozoite adhesive and shape properties, is sufficient to entirely account for the first key step of the invasion process, that of merozoite reorientation to its apex and tight adhesive linkage between the two cells. Next, parasite-induced reorganization of the erythrocyte cytoskeleton and release of parasite-derived membrane can also account for a considerable energetic portion of actual invasion itself, through membrane wrapping. Thus, contrary to the prevailing dogma, wrapping by the erythrocyte combined with parasite-derived membrane release can markedly reduce the expected contributions of the merozoite actomyosin motor to invasion. We therefore propose that invasion is a balance between parasite and host cell contributions, evolved toward maximal efficient use of biophysical forces between the two cells.  相似文献   

17.
The blood stage malaria parasite, the merozoite, has a small window of opportunity during which it must successfully target and invade a human erythrocyte. The process of invasion is nonetheless remarkably rapid. To date, mechanistic models of invasion have focused predominantly on the parasite actomyosin motor contribution to the energetics of entry. Here, we have conducted a numerical analysis using dimensions for an archetypal merozoite to predict the respective contributions of the host-parasite interactions to invasion, in particular the role of membrane wrapping. Our theoretical modeling demonstrates that erythrocyte membrane wrapping alone, as a function of merozoite adhesive and shape properties, is sufficient to entirely account for the first key step of the invasion process, that of merozoite reorientation to its apex and tight adhesive linkage between the two cells. Next, parasite-induced reorganization of the erythrocyte cytoskeleton and release of parasite-derived membrane can also account for a considerable energetic portion of actual invasion itself, through membrane wrapping. Thus, contrary to the prevailing dogma, wrapping by the erythrocyte combined with parasite-derived membrane release can markedly reduce the expected contributions of the merozoite actomyosin motor to invasion. We therefore propose that invasion is a balance between parasite and host cell contributions, evolved toward maximal efficient use of biophysical forces between the two cells.  相似文献   

18.
The coordinated exit of intracellular pathogens from host cells is a process critical to the success and spread of an infection. While phospholipases have been shown to play important roles in bacteria host cell egress and virulence, their role in the release of intracellular eukaryotic parasites is largely unknown. We examined a malaria parasite protein with phospholipase activity and found it to be involved in hepatocyte egress. In hepatocytes, Plasmodium parasites are surrounded by a parasitophorous vacuole membrane (PVM), which must be disrupted before parasites are released into the blood. However, on a molecular basis, little is known about how the PVM is ruptured. We show that Plasmodium berghei phospholipase, PbPL, localizes to the PVM in infected hepatocytes. We provide evidence that parasites lacking PbPL undergo completely normal liver stage development until merozoites are produced but have a defect in egress from host hepatocytes. To investigate this further, we established a live-cell imaging-based assay, which enabled us to study the temporal dynamics of PVM rupture on a quantitative basis. Using this assay we could show that PbPL-deficient parasites exhibit impaired PVM rupture, resulting in delayed parasite egress. A wild-type phenotype could be re-established by gene complementation, demonstrating the specificity of the PbPL deletion phenotype. In conclusion, we have identified for the first time a Plasmodium phospholipase that is important for PVM rupture and in turn for parasite exit from the infected hepatocyte and therefore established a key role of a parasite phospholipase in egress.  相似文献   

19.
Structure and invasive behaviour of Plasmodium knowlesi merozoites in vitro.   总被引:10,自引:0,他引:10  
The structure and invasive behaviour of extracellular erythrocytic merozoites prepared by a cell sieving method have been studied with the electron microscope. Free merozoites contain organelles similar to those described in late schizonts of Plasmodium knowlesi. Their surface is lined by a coat of short filaments. On mixing with fresh red cells, merozoites at first adhere, then cause the red cell surface to invaginate rapidly, often with the formation of narrow membranous channels in the red cell interior. As the merozoite enters the invagination it forms an attachment by its cell coat to the rim of the pit, and finally leaves this coat behind as it is enclosed in a red cell vacuole. Dense, rounded intracellular bodies then move to the merozoite periphery, and apparently rupture to cause further localized invagination of the red cell vacuole. The merozoite finally loses its rhoptries, the pellicle is reduced to a single membrane and the parasite becomes a trophozoite. Invasion is complete by 1 min after adhesion, and the trophozoite is formed by 10 min.  相似文献   

20.
Three opposing pathways are proposed for the release of malaria parasites from infected erythrocytes: coordinated rupture of the two membranes surrounding mature parasites; fusion of erythrocyte and parasitophorus vacuolar membranes (PVM); and liberation of parasites enclosed within the vacuole from the erythrocyte followed by PVM disintegration. Rupture by cell swelling should yield erythrocyte ghosts; membrane fusion is inhibited by inner-leaflet amphiphiles of positive intrinsic curvature, which contrariwise promote membrane rupture; and without protease inhibitors, parasites would leave erythrocytes packed within the vacuole. Therefore, we visualized erythrocytes releasing P. falciparum using fluorescent microscopy of differentially labeled membranes. Release did not yield erythrocyte ghosts, positive-curvature amphiphiles did not inhibit release but promoted it, and release of packed merozoites was shown to be an artifact. Instead, two sequential morphological stages preceded a convulsive rupture of membranes and rapid radial discharge of separated merozoites, leaving segregated internal membrane fragments and plasma membrane vesicles or blebs at the sites of parasite egress. These results, together with the modulation of release by osmotic stress, suggest a pathway of parasite release that features a biochemically altered erythrocyte membrane that folds after pressure-driven rupture of membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号