首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Certain members of the family Chenopodiaceae are the dominant species of the deserts of Central Asia; many of them are succulent halophytes which exhibit C4-type CO2 fixation of the NAD- or NADP-ME (malic enzyme) subgroup. In four C4 species of the tribe Salsoleae, the Salsoloid-type Kranz anatomy in leaves or stems was studied in relation to the diversity in anatomy which was found in cotyledons. Halocharis gossypina, has C4 NAD-ME Salsoloid-type photosynthesis in leaves and C3 photosynthesis in dorsoventral non-Kranz cotyledons; Salsola laricina has C4 NAD-ME Salsoloid-type leaves and C4 NAD-ME Atriplicoid-type cotyledons; Haloxylon persicum, has C4 NADP-ME Salsoloid-type green stems and C3 isopalisade non-Kranz cotyledons; and S. richteri has C4 NADP-ME Salsoloid-type leaves and cotyledons. Immunolocalization studies on Rubisco showed strong labelling in bundle sheath cells of leaves and cotyledons of organs having Kranz anatomy. The C4 pathway enzyme phosphoenolpyruvate carboxylase was localized in mesophyll cells, while the malic enzymes were localized in bundle sheath cells of Kranz-type tissue. Immunolocalization by electron microscopy showed NAD-ME is in mitochondria while NADP-ME is in chloroplasts of bundle sheath cells in the respective C4 types. In some C4 organs, it was apparent that subepidermal cells and water storage cells also contain some chloroplasts which have Rubisco, store starch, and thus perform C3 photosynthesis. In non-Kranz cotyledons of Halocharis gossypina and Haloxylon persicum, Rubisco was found in chloroplasts of both palisade and spongy mesophyll cells with the heaviest labelling in the layers of palisade cells, whereas C4 pathway proteins were low or undetectable. The pattern of starch accumulation correlated with the localization of Rubisco, being highest in the bundle sheath cells and lowest in the mesophyll cells of organs having Kranz anatomy. In NAD-ME-type Kranz organs (leaves and cotyledons of S. laricina and leaves of H. gossypina the granal index (length of appressed membranes as a percentage of total length of all membranes) of bundle sheath chloroplasts is 1.5 to 2.5 times higher than that of mesophyll chloroplasts. In contrast, in the NADP-ME-type Kranz organs (S. richteri leaves and cotyledons and H. persicum stems) the granal index of mesophyll chloroplasts is 1.5 to 2.2 times that of the bundle sheath chloroplasts. The mechanism of photosynthesis in these species is discussed in relation to structural differences.  相似文献   

2.
Family Chenopodiaceae is an intriguing lineage, having the largest number of C4 species among dicots, including a number of anatomical variants of Kranz anatomy and three single-cell C4 functioning species. In some previous studies, during the culture of Bienertia cycloptera Bunge ex Boiss., carbon isotope values (δ13C values) of leaves deviated from C4 to C3−C4 intermediate type, raising questions as to its mode of photosynthesis during growth in natural environments. This species usually co-occurs with several Kranz type C4 annuals. The development of B. cycloptera morphologically and δ13C values derived from plant samples (cotyledons, leaves, bracts, shoots) were analyzed over a complete growing season in a salt flat in north central Iran, along with eight Kranz type C4 species and one C3 species. For a number of species, plants were greenhouse-grown from seeds collected from the site, in order to examine leaf anatomy and C4 biochemical subtype. Among the nine C4 species, the cotyledons of B. cycloptera, and of the Suaeda spp. have the same respective forms of C4 anatomy occurring in leaves, while cotyledons of members of tribe Caroxyloneae lack Kranz anatomy, which is reflected in the δ13C values found in plants grown in the natural habitat. The nine C4 species had average seasonal δ13C values of −13.9‰ (with a range between species from −11.3 to −15.9‰). The measurements of δ13C values over a complete growing season show that B. cycloptera performs C4 photosynthesis during its life cycle in nature, similar to Kranz type species, with a seasonal average δ13C value of −15.2‰. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
 The Chenopodiaceae genus Salsola contains a large number of species with C4 photosynthesis. Along with derivative genera they have a prominent position among the desert vegetation of Asia and Africa. About 130 species from Asia and Africa were investigated to determine the occurrence of C3 versus C4 syndrome in leaves and cotyledons, and to study specific anatomical and biochemical features of photosynthesis in both photosynthetic organs. The species studied belong to all six previously identified sections of the tribe Salsoleae based on morphological characters. Types of photosynthesis were identified using carbon 13C/12C isotope fractionation. The representatives of all systematic groups were investigated for mesophyll anatomy and biochemical subtypes by determination of enzyme activity (RUBPC, PEPC, NAD- and NADP-ME and AAT) and primary photosynthetic products. Two photosynthetic types (C3 and C4) and two biochemical subtypes (NAD- and NADP-ME) were identified in both leaves and cotyledons. Both Kranz and non-Kranz type anatomy were found in leaves and cotyledons, but cotyledons had more diversity in anatomical structure. Strong relationships between anatomical types and biochemical subtypes in leaves and cotyledons were shown. We found convincing evidence for a similar pattern of structural and biochemical features of photosynthesis in leaves and cotyledons within systematic groups, and evaluated their relevance at the evolutionary level. We identified six groups in tribe Salsoleae with respect to photosynthetic types and mesophyll structure in leaves and cotyledons. Two separate lineages of biochemical and anatomical evolution within Salsoleae were demonstrated based on studies of leaves and cotyledons. The sections Caroxylon, Malpighipila, Cardiandra and Belanthera have no C3 species and only the NAD-ME C4 subtype has been found in leaves. We suggest the C4 species in the NADP-ME lineage evolved in Coccosalsola and Salsola sections, and originated in the subsection Arbuscula. Coccosalsola contains many species with C3 and/or C3-C4 intermediate photosynthesis. Within these main evolutionary lineages, species of different taxonomic groups (sections and subsections) had differences in anatomical or/and biochemical features in leaves and cotyledons. We conclude that structural and biochemical changes in the photosynthetic apparatus in species of the tribe Salsoleae were a key factor in their evolution and broad distribution in extreme desert environments. Received January 25, 2001 Accepted July 17, 2001  相似文献   

4.
Salsola arbusculiformis is identified as a C3–C4intermediatespecies based on anatomical, biochemical and physiological characteristics.This is the first report of a naturally occurring intermediatespecies in the Chenopodiaceae, the family with the largest numberof C4species amongst the dicots. In the genus Salsola, mostspecies have Salsoloid anatomy with Kranz type bundle sheathcells and C4photosynthesis, while a few species have Sympegmoidanatomy and were found to have non-Kranz type bundle sheathcells and C3photosynthesis. In the cylindrical leaves of C4Salsolawith Salsoloid type anatomy, there is a continuous layer ofdistinct, chlorenchymatous Kranz type bundle sheath cells surroundedby a single layer of mesophyll cells; whereas species with Sympegmoidtype anatomy have an indistinct bundle sheath with few chloroplastsand multiple layers of chlorenchymatous mesophyll cells. However,S. arbusculiformis has intermediate anatomical features. Whileit has two-to-three layers of mesophyll cells, characteristicof Sympegmoid anatomy, it has distinctive, Kranz-like bundlesheath cells with numerous chloroplasts and mitochondria. Measurementsof its CO2compensation point and CO2response of photosynthesisshow S. arbusculiformis functions as an intermediate specieswith reduced levels of photorespiration. The primary means ofreducing photorespiration is suggested to be by refixing photorespiredCO2in bundle sheath cells, since analysis of photosyntheticenzymes (activity and immunolocalization) and14CO2labellingof initial fixation products suggests minimal operation of aC4cycle. Copyright 2001 Annals of Botany Company Immunolocalization, photosynthetic enzymes, C3–C4intermediate, C4-plants, leaf anatomy, Chenopodiaceae, Salsola arbusculiformis  相似文献   

5.

Background and Aims

Cleomaceae is one of 19 angiosperm families in which C4 photosynthesis has been reported. The aim of the study was to determine the type, and diversity, of structural and functional forms of C4 in genus Cleome.

Methods

Plants of Cleome species were grown from seeds, and leaves were subjected to carbon isotope analysis, light and scanning electron microscopy, western blot analysis of proteins, and in situ immunolocalization for ribulose bisphosphate carboxylase oxygenase (Rubisco) and phosphoenolpyruvate carboxylase (PEPC).

Key Results

Three species with C4-type carbon isotope values occurring in separate lineages in the genus (Cleome angustifolia, C. gynandra and C. oxalidea) were shown to have features of C4 photosynthesis in leaves and cotyledons. Immunolocalization studies show that PEPC is localized in mesophyll (M) cells and Rubisco is selectively localized in bundle sheath (BS) cells in leaves and cotyledons, characteristic of species with Kranz anatomy. Analyses of leaves for key photosynthetic enzymes show they have high expression of markers for the C4 cycle (compared with the C3–C4 intermediate C. paradoxa and the C3 species C. africana). All three are biochemically NAD-malic enzyme sub-type, with higher granal development in BS than in M chloroplasts, characteristic of this biochemical sub-type. Cleome gynandra and C. oxalidea have atriplicoid-type Kranz anatomy with multiple simple Kranz units around individual veins. However, C. angustifolia anatomy is represented by a double layer of concentric chlorenchyma forming a single compound Kranz unit by surrounding all the vascular bundles and water storage cells.

Conclusions

NAD-malic enzyme-type C4 photosynthesis evolved multiple times in the family Cleomaceae, twice with atriplicoid-type anatomy in compound leaves having flat, broad leaflets in the pantropical species C. gynandra and the Australian species C. oxalidea, and once by forming a single Kranz unit in compound leaves with semi-terete leaflets in the African species C. angustifolia. The leaf morphology of C. angustifolia, which is similar to that of the sister, C3–C4 intermediate African species C. paradoxa, suggests adaptation of this lineage to arid environments, which is supported by biogeographical information.  相似文献   

6.
Zhibin Wen  Mingli Zhang 《Flora》2011,206(8):720-730
To examine the anatomical types in Salsoleae s.l., and evaluate carbon isotope fractionation values for identifying the respective photosynthetic pathway, a total of 34 species representing 12 genera of Salsoleae s.l. in China were examined using light microscopy and carbon 13C/12C isotope fractionation. There are nine leaf anatomical types, namely, Sympegmoid (Sympegmoid type, Sympegmoid type II), Salsoloid with hypodermis (Salsola soda type, Salsola soda type II, Nanophyton type II), Salsoloid without hypodermis (Salsola kali type, Salsola kali type II, Nanophyton type, Climacoptera type II). Salsola soda type and Salsola soda type II are found in the assimilating shoots. Two new subtypes, Salsola soda type II and Nanophyton type II are reported. Anabasis brevifolia, A. eriopoda, A. elatior, A. truncata and A. salsa are of the Salsola soda type II, with a distinctive two-layered epidermis cells. Horaninowia ulicina is of the Nanophyton type II with hypodermis which distinguished from Nanophyton type; Both, Salsola kali type and Climacoptera type II exist in Climacoptera. The Climacoptera type II is distinguished from Climacoptera type by an adaxially interrupted Kranz layer. Salsola collina, S. zaidamica, S. praecox, S. pellucida and S. ruthenica in Salsola sect. Salsola have the Salsola kali type II. The Salsola kali type differs from Salsola kali type II having the palisade and Kranz cells interrupted by longitudinal collenchymatic ridges. Although carbon isotope fractionation data alone are already useful tools to identify photosynthesis, their determination in combination with other approaches, such as anatomical studies are necessary in order to render a structuring of all possibilities evolved among C4 type Chenopodiaceae.  相似文献   

7.
Osamu Ueno 《Planta》1996,199(3):382-393
Eleocharis vivipara Link is a unique amphibious leafless sedge. The terrestrial form has Kranz anatomy and the biochemical traits of C4 plants while the submerged form develops structural and biochemical traits similar to those of C3 plants. The structural features of the culms, which are the photosynthetic organs, of the two forms were examined and compared. The culms of the terrestrial form have mesophyll cells and three bundle sheaths which consist of three kinds of cell, namely, the innermost Kranz cells that contain large numbers of organelles, the middle mestome sheath cells that lack chloroplasts, and the outermost parenchyma sheath cells that contain chloroplasts. The culms of the submerged form had a tendency towards reduction in numbers and size of Kranz cells and vascular bundles, as compared to the terrestrial form, and they had spherical mesophyll cells that were tightly packed without intercellular spaces inside the epidermis. The submerged form had a higher ratio of cross-sectional area of mesophyll cells plus parenchyma sheath cells to that of Kranz cells than the terrestrial form. The difference was mainly due to a decrease in the number and the size of the Kranz cells and to a marked increase in the size of the mesophyll cells and the parenchyma sheath cells in the submerged form, as compared to the terrestrial form. The Kranz cells of the terrestrial form had basically the structural characteristics of plants of the NAD-malic enzyme type, with the exception of the intracellular location of organelles. The Kranz cells of the submerged form included only a few organelles, and the percentage of organelles partitioned to the Kranz cells was significantly smaller in the submerged form than in the terrestrial form. In addition, the size of chloroplasts of the Kranz cells was 60–70% of that of the terrestrial form. These structural differences between the two forms may be related to the functional differences in their mechanisms of photosynthesis.Abbreviations KC Kranz cell - MC mesophyll cell - PSC parenchyma sheath cell - NAD-ME NAD-malic enzyme - VB vascular bundle This study was supported by Grants-in-Aid from the Ministry of Agriculture, Forestry and Fisheries of Japan (Integrated Research Program for the Use of Biotechnological Procedures for Plant Breeding) and from the Science and Technology Agency of Japan (Enhancement of Center-of-Excellence, the Special Coordination Funds for Promoting Science and Technology).  相似文献   

8.
Cassava, bean and maize leaves were fed with14CO2 in light and the primary products of photosynthesis identified 5 and 10 seconds after assimilation. In maize, approximately three quarters of the labelled carbon was incorporated in C4 acids, in beans about two thirds in PGA, and in cassava approximately 40–60% in C4 acids with 30–50% in PGA. These data indicate that cassava possesses the C4 photosynthetic cycle, however due to the lack of typical Kranz anatomy appreciable carbon assimilation takes place directly through the Calvin-Benson-Bassham cycle.  相似文献   

9.
A few species of Cymbopogon and Vetiveria are potentially important tropical grasses producing essential oils. In the present study, we report on the leaf anatomy and photosynthetic carbon assimilation in five species of Cymbopogon and Vetiveria zizanioides. Kranz-type leaf anatomy with a centrifugal distribution of chloroplasts and exclusive localization of starch in the bundle sheath cells were common among the test plants. Besides the Kranz leaf anatomy, these grasses displayed other typical C4 characteristics including a low (0–5 µl/l) CO2 compensation point, lack of light saturation of CO2 uptake at high photon flux densities, high temperature (35°C) optimum of net photosynthesis, high rates of net photosynthesis (55–67 mg CO2 dm-2 leaf area h-1), little or no response of net photosynthesis to atmospheric levels of O2 and high leaf 13C/12C ratios. The biochemical studies with 14CO2 indicated that the leaves of the above plant species synthesize predominantly malate during short term (5 s) photosynthesis. In pulse-chase experiments it was shown that the synthesis of 3-phosphoglycerate proceeds at the expense of malate, the major first formed product of photosynthesis in these plant species.  相似文献   

10.
Wakayama M  Ohnishi J  Ueno O 《Planta》2006,223(6):1243-1255
In its leaf blade, Arundinella hirta has unusual Kranz cells that lie distant from the veins (distinctive cells; DCs), in addition to the usual Kranz units composed of concentric layers of mesophyll cells (MCs) and bundle sheath cells (BSCs; usual Kranz cells) surrounding the veins. We examined whether chlorophyllous organs other than leaf blades—namely, the leaf sheath, stem, scale leaf, and constituents of the spike—also have this unique anatomy and the C4 pattern of expression of photosynthetic enzymes. All the organs developed DCs to varying degrees, as well as BSCs. The stem, rachilla, and pedicel had C4-type anatomy with frequent occurrence of DCs, as in the leaf blade. The leaf sheath, glume, and scale leaf had a modified C4 anatomy with MCs more than two cells distant from the Kranz cells; DCs were relatively rare. An immunocytochemical study of C3 and C4 enzymes revealed that all the organs exhibited essentially the same C4 pattern of expression as in the leaf blade. In the scale leaf, however, intense expression of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) occurred in the MCs as well as in the BSCs and DCs. In the leaf sheath, the distant MCs also expressed Rubisco. In Arundinella hirta, it seems that the ratio of MC to Kranz cell volumes, and the distance from the Kranz cells, but not from the veins, affects the cellular expression of photosynthetic enzymes. We suggest that the main role of DCs is to keep a constant quantitative balance between the MCs and Kranz cells, which is a prerequisite for effective C4 pathway operation.  相似文献   

11.
Osamu Ueno 《Planta》1996,199(3):394-403
Eleocharis vivipara link, an amphibious leafless sedge, develops traits of C4 photosynthesis and Kranz anatomy in the terrestrial form but develops C3-like traits with non-Kranz anatomy when submerged. The cellular localization of C3 and C4 enzymes in the photosynthetic cells of the two forms was investigated by immunogold labeling and electron microscopy. The terrestrial form has mesophyll cells and three kinds of bundle sheath cell, namely, parenchyma sheath cells, non-chlorophyllous mestome sheath cells, and Kranz cells. Phosphoenol-pyruvate carboxylase (PEPCase) was present in the cytosol of both the mesophyll cells and the parenchyma sheath cells, with higher-density labeling in the latter, but not in the Kranz cells. Pyruvate, Pi dikinase (PPDK) was found at high levels in the chloroplasts of both the mesophyll cells and the parenchyma sheath cells with some-what stronger labeling in the latter. This enzyme was also absent from the Kranz cells. Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) was found in the chloroplasts of all types of photosynthetic cell, but labeling was significantly less intense in the parenchyma sheath cells than in other types of cell. The submerged form also has three types of photosynthetic cell, as well as non-chlorophyllous mestome sheath cells, but it lacks the traits of Kranz anatomy as a consequence of modification of the cells. Rubisco was densely distributed in the chloroplasts of all the photosynthetic cells. However, PEPCase and PPDK were found in both the mesophyll cells and the parenchyma sheath cells but at lower levels than in the terrestrial form. These data reveal that the terrestrial form has a unique pattern of cellular localization of C3 and C4 enzymes, and they suggest that this pattern and the changes in the extent of accumulation of the various enzymes are the main factors responsible for the difference in photosynthetic traits between the two forms.Abbreviations CAM crassulacean acid metabolism - MC meso phyll cell - PSC parenchyma sheath cell - KC Kranz cell - PEP-Case phosphoenolpyruvate carboxylase - PPDK pyruvate, Pi dikinase - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - LS large subunit - RuBP ribulose-1,5-bisphosphate This study was supported by Grants-in-Aid from the Ministry of Agriculture, Forestry and Fisheries of Japan (Integrated Research Program for the Use of Biotechnological Procedures for Plant Breeding) and from the Science and Technology Agency of Japan (Enhancement of Center-of-Excellence, the Special Coordination Funds for Promoting Science and Technology). The author is grateful to Drs M. Matsuoka and S. Muto for providing the antisera and Dr. M. Samejima for his advice at the early stages of this study.  相似文献   

12.
The photosynthetic efficiency of the CO2‐concentrating mechanism in two forms of single‐cell C4 photosynthesis in the family Chenopodiaceae was characterized. The Bienertioid‐type single‐cell C4 uses peripheral and central cytoplasmic compartments (Bienertia sinuspersici), while the Borszczowioid single‐cell C4 uses distal and proximal compartments of the cell (Suaeda aralocaspica). C4 photosynthesis within a single‐cell raises questions about the efficiency of this type of CO2‐concentrating mechanism compared with the Kranz‐type. We used measurements of leaf CO2 isotope exchange (Δ13C) to compare the efficiency of the single‐cell and Kranz‐type forms of C4 photosynthesis under various temperature and light conditions. Comparisons were made between the single‐cell C4 and a sister Kranz form, S. eltonica[NAD malic enzyme (NAD ME) type], and with Flaveria bidentis[NADP malic enzyme (NADP‐ME) type with Kranz Atriplicoid anatomy]. There were similar levels of Δ13C discrimination and CO2 leakiness (?) in the single‐cell species compared with the Kranz‐type. Increasing leaf temperature (25 to 30 °C) and light intensity caused a decrease in Δ13C and ? across all C4 types. Notably, B. sinuspersici had higher Δ13C and ? than S. aralocaspica under lower light. These results demonstrate that rates of photosynthesis and efficiency of the CO2‐concentrating mechanisms in single‐cell C4 plants are similar to those in Kranz‐type.  相似文献   

13.
C (4) species of family Chenopodiaceae, subfamily Suaedoideae have two types of Kranz anatomy in genus Suaeda, sections Salsina and Schoberia, both of which have an outer (palisade mesophyll) and an inner (Kranz) layer of chlorenchyma cells in usually semi-terete leaves. Features of Salsina (S. AEGYPTIACA, S. arcuata, S. taxifolia) and Schoberia type (S. acuminata, S. Eltonica, S. cochlearifoliA) were compared to C (3) type S. Heterophylla. In Salsina type, two layers of chlorenchyma at the leaf periphery surround water-storage tissue in which the vascular bundles are embedded. In leaves of the Schoberia type, enlarged water-storage hypodermal cells surround two layers of chlorenchyma tissue, with the latter surrounding the vascular bundles. The chloroplasts in Kranz cells are located in the centripetal position in Salsina type and in the centrifugal position in the Schoberia type. Western blots on C (4) acid decarboxylases show that both Kranz forms are NAD-malic enzyme (NAD-ME) type C (4) species. Transmission electron microscopy shows that mesophyll cells have chloroplasts with reduced grana, while Kranz cells have chloroplasts with well-developed grana and large, specialized mitochondria, characteristic of NAD-ME type C (4) chenopods. In both C (4) types, phosphoenolpyruvate carboxylase is localized in the palisade mesophyll, and Rubisco and mitochondrial NAD-ME are localized in Kranz cells, where starch is mainly stored. The C (3) species S. heterophylla has Brezia type isolateral leaf structure, with several layers of Rubisco-containing chlorenchyma. Photosynthetic response curves to varying CO (2) and light in the Schoberia Type and Salsina type species were similar, and typical of C (4) plants. The results indicate that two structural forms of Kranz anatomy evolved in parallel in species of subfamily Suaedoideae having NAD-ME type C (4) photosynthesis.  相似文献   

14.
The quantitative anatomy of developing cotyledons of NAD-malic enzyme species Salsola incanescens and NADP-malic enzyme species S. paulsenii (Chenopodiaceae) was studied. S. incanescens belongs to the group of species with foliar type of seedling development characterized by slowly growing cotyledons and a rosette form at juvenility. The rosette is the consequence of fast leaf formation, which was correlated with a low rate of leaf growth. S. paulsenii belongs to the group with the cotyledonous type of seedling development. A high growth rate of cotyledons, slow leaf formation, and absence of the rosette characterize this type. Slow leaf formation was correlated with a high rate of leaf growth. The Kranz–anatomy in cotyledons of S. incanescens (atriplicoid type) and S. paulsenii (salsoloid type) determines the duration of cotyledon development proceeding for 15 days after seed germination. The rate of growth changes during the developmental period was correlated with the type of seedling development. Cotyledons of a foliar species S. incanescens exhibit 2 to 5 times slower growth changes in cotyledon area, width, thickness, volume of mesophyll and bundle sheath cells, and number of chloroplasts per bundle sheath cell than the cotyledons of a cotyledonous species S. paulsenii. During cotyledon development in both species, the number of chloroplasts per mesophyll cell remained unchanged, and developmental changes in the bundle sheath occurred at higher rate than in mesophyll cells. Thus, these two indices seem to be independent of the type of Kranz–anatomy. The presence of atriplicoid type cotyledons in the species with salsoloid structure of true leaves might indicate a close genetic relationship between these two patterns of Kranz-anatomy.  相似文献   

15.
The amphibious leafless sedge Eleocharis retroflexa ssp. chaetaria expresses C4-like biochemical characteristics in both the terrestrial and submerged forms. Culms of the terrestrial form have Kranz anatomy, whereas those of the submerged form have Kranz-like anatomy combined with anatomical features of aquatic plant leaves. We examined the immunolocalization of C3 and C4 enzymes in culms of the two forms. In both forms, phosphoenolpyruvate carboxylase; pyruvate, Pi dikinase; and NAD-malic enzyme were compartmentalized between the mesophyll (M) and Kranz cells, but their levels were somewhat reduced in the submerged form. In the terrestrial form, ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) occurred mainly in the Kranz cells, and weakly in the M chloroplasts. In the submerged form, the rubisco occurred at higher levels in the M cells than in the terrestrial form. In both forms, the C4 pattern of enzyme expression was clearer in the M cells adjacent to Kranz cells than in distant M cells. During the transition from terrestrial to submerged conditions, the enzyme expression pattern changed in submerged mature culms that had been formed in air before submergence, and matched that in culms newly developed underwater. It seems that effects of both environmental and developmental factors overlap in the C4 pattern expression in this plant.  相似文献   

16.
The leafless amphibious sedge Eleocharis vivipara develops culms with C4 traits and Kranz anatomy under terrestrial conditions, but develops culms with C3 traits and non-Kranz anatomy under submerged conditions. The culms of the terrestrial form have high C4 enzyme activities, while those of the submerged form have decreased C4 enzyme activities. The culms accumulate ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) in the mesophyll cells (MC) and the bundle sheath cells. The Rubisco in the MC may be responsible for the operation of the C3 pathway in the submerged form. To verify the presence of the C3 cycle in the MC, we examined the effects of 3,3-dichloro-2-(dihydroxyphosphinoylmethyl) -propenoate (DCDP), an inhibitor of phosphoenolpyruvate carboxylase (PEPC), on photosynthesis in culms of the terrestrial forms of E. vivipara and related amphibious species, E. baldwinii and E. retroflexa ssp. chaetaria. When 1 mM DCDP was fed via the transpiration stream to excised leaves, photosynthesis was inhibited completely in Fimbristylis dichotoma (C4 control), but by only 20% in potato (C3 control). In the terrestrial Eleocharis plants, the degree of inhibition of photosynthesis by DCDP was intermediate between those of the C4 and C3 plants, at 58–81%. These results suggest that photosynthesis under DCDP treatment in the terrestrial Eleocharis plants is due mainly to fixation of atmospheric CO2 by Rubisco and probably the C3 cycle in the MC. These features are reminiscent of those in C4-like plants. Differential effects of DCDP on photosynthesis of the 3 Eleocharis species are discussed in relation to differences in the degree of Rubisco accumulation and C3 activity in the MC. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
Species in the Laxa and Grandia groups of the genus Panicum are adapted to low, wet areas of tropical and subtropical America. Panicum milioides is a species with C3 photosynthesis and low apparent photorespiration and has been classified as a C3/C4 intermediate. Other species in the Laxa group are C3 with normal photorespiration. Panicum prionitis is a C4 species in the Grandia group. Since P. milioides has some leaf characteristics intermediate to C3 and C4 species, its photosynthetic response to irradiance and temperature was compared to the closely related C3 species, P. laxum and P. boliviense and to P. prionitis. The response of apparent photosynthesis to irradiance and temperature was similar to that of P. laxum and P. boliviense, with saturation at a photosynthetic photo flux density of about 1 mmol m-2 s-1 at 30°C and temperature optimum near 30°C. In contrast, P. prionitis showed no light saturation up to 2 mmol m-2 s-1 and an optimum temperature near 40°C. P. milioides exhibited low CO2 loss into CO2-free air in the light and this loss was nearly insensitive to temperature. Loss of CO2 in the light in the C3 species, P. laxum and P. boliviense, was several-fold higher than in P. milioides and increased 2- to 5-fold with increases in temperature from 10 to 40°C. The level of dark respiration and its response to temperature were similar in all four Panicum species examined. It is concluded that the low apparent photorespiration in P. milioides does not influence its response of apparent photosynthesis to irradiance and temperature in comparison to closely related C3 Panicum species.Abbreviations AP apparent photosynthesis - I CO2 compensation point - gl leaf conductance; gm, mesophyll conductance - PPFD photosynthetic photon flux density - PR apparent photorespiration rate - RuBPC sibulose bisphosphate carboxylase  相似文献   

18.
The aquatic monocot Hydrilla verticillata (L.f.) Royle is a well-documented facultative C4 NADP-malic enzyme species in which the C4 and Calvin cycles operate in the same cell with the specific carboxylases confined to the cytosol and chloroplast, respectively. Several key components had already been characterized at the molecular level, thus the purpose of this study was to begin to identify other, less obvious, elements that may be necessary for a functional single-cell C4 system. Using differential display, mRNA populations from C3 and C4 H. verticillata leaves were screened and expression profiles compared. From this study, 65 clones were isolated and subjected to a customized macroarray analysis; 25 clones were found to be upregulated in C4 leaves. Northern and semi-quantitative RT-PCR analyses were used for confirmation. From these screenings, 13 C4 upregulated genes were identified. Among these one encoded a previously recognized C4 phosphoenolpyruvate carboxylase, and two encoded distinct pyruvate orthophosphate dikinase isoforms, new findings for H. verticillata. Genes that encode a transporter, an aminotransferase and two chaperonins were also upregulated. Twelve false positives, mostly housekeeping genes, were determined from the Northern/semi-quantitative RT-PCR analyses. Sequence data obtained in this study are listed in the dbEST database (DV216698 to DV216767). As a single-cell C4 system that lacks Kranz anatomy, a better understanding of how H. verticillata operates may facilitate the design of a transgenic C4 system in a C3 crop species.Srinath K. Rao and Hiroshi Fukayama contributed equally to this study.  相似文献   

19.
The aquatic angiosperm Hydrilla verticillata lacks Kranz anatomy, but has an inducible, C4-based, CO2 concentrating mechanism (CCM) that concentrates CO2 in the chloroplasts. Both C3 and C4 Hydrilla leaves showed light-dependent pH polarity that was suppressed by high dissolved inorganic carbon (DIC). At low DIC (0.25 mol m−3), pH values in the unstirred water layer on the abaxial and adaxial sides of the leaf were 4.2 and10.3, respectively. Abaxial apoplastic acidification served as a CO2 flux mechanism (CFM), making HCO3 available for photosynthesis by conversion to CO2. DIC at 10 mol m−3 completely suppressed acidification and alkalization. The data, along with previous results, indicated that inhibition was specific to DIC, and not a buffer effect. Acidification and alkalization did not necessarily show 1:1 stoichiometry; their kinetics for the apolar induction phase differed, and alkalization was less inhibited by 2.5 mol m−3 DIC. At low irradiance (50 μmol photons m−2 s−1), where CCM activity in C4 leaves is minimized, both leaf types had similar DIC inhibition of pH polarity. However, as irradiance increased, DIC inhibition of C3 leaves decreased. In C4 leaves the CFM and CCM seemed to compete for photosynthetic ATP and/or reducing power. The CFM may require less, as at low irradiance it still operated maximally, if [DIC] was low. Iodoacetamide (IA), which inhibits CO2 fixation in Hydrilla, also suppressed acidification and alkalization, especially in C4 leaves. IA does not inhibit the C4 CCM, which suggests that the CFM and CCM can operate independently. It has been hypothesized that irradiance and DIC regulate pH polarity by altering the chloroplastic [DIC], which effects the chloroplast redox state and subsequently redox regulation of a plasma-membrane H+-ATPase. The results lend partial support to a down-regulatory role for high chloroplastic [DIC], but do not exclude other sites of DIC action. IA inhibition of pH polarity seems inconsistent with the chloroplast NADPH/NADP+ ratio being the redox transducer. The possibility that malate and oxaloacetate shuttling plays a role in CFM regulation requires further investigation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
The genusEleocharis, a blade-less sedge group, has been very recently recorded to include NAD-malic enzyme type C4 species. The ultrastructural features of culms of two C4 representatives in the genus were examined in relation to the C4 acid decarboxylation type. They possessed non-chlorophyllous mestome sheath cells between mesophyll cells and Kranz cells, and were confirmed biochemically to be NAD-malic enzyme type. The oval or lenticular chloroplasts with well-developed grana are scattered in the Kranz cells with abundant large mitochondria, and do not show such centripetal position as is known in the “classical NAD-malic enzyme type”. The suberized lamellae occur in the mestome sheath cells internally surrounding the Kranz sheath and may contribute to maintaining high CO2 concentration in the Kranz cells. These new structural features of the NAD-malic enzyme type found inEleocharis are added to the structural and functional relationships of the C4 types in the Cyperaceae reported previously  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号