首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
When stimulated with different stimuli, neutrophils generate various active oxygen species. These active oxygen molecules can be analyzed by luminol chemiluminescence (LCL). Phosphatidylserine (PS)-liposomes increased the formylmethionyl-leucyl-phenylalanine-induced LCL of guinea pig peritoneal neutrophils without affecting their oxygen consumption and superoxide (O2.-) generation. Similar effects of PS-liposomes were also observed in LCL of neutrophils stimulated by phorbol myristate acetate or arachidonic acid but not by opsonized zymosan. Kinetic analysis revealed that the PS-liposome-induced increase in LCL depended on extracellulary generated O2.-. Moreover, the stimulatory effect of PS could be seen only when it formed liposomal membranes. The effect of PS-liposomes was also inhibited by superoxide dismutase, catalase, and deferoxamine, an iron chelator, but not by azide, an inhibitor of myeloperoxidase. Similar enhancement of stimulation-dependent LCL response was also observed with Fe3+ and ADP-Fe3+, but the degree of enhancement was much greater with PS-liposomes than with iron and its complex. The increase in hydroxyl radical generation by PS-liposome-treated neutrophils was confirmed by experiments with EPR spectrometry using spin-trapping agents. These results suggested that the interaction of neutrophils with PS-containing membrane surface might generate reactive oxygen species that enhance the stimulus-dependent LCL response of neutrophils.  相似文献   

2.
A simple method was developed to isolate viable human salivary polymorphonuclear leukocytes (SPMN) from the oral cavity, and stimulation-coupled responses of these cells were examined. From morphological characteristics and the presence of neutrophil-specific annexin protein (39-kDa protein), we found that these cells seemed to be very similar to human peripheral polymorphonuclear leukocytes (PPMN), although they were in rather young stages. Stimulation-coupled responses of these cells were observed in terms of superoxide (O2.-) genration, luminol chemiluminescence response (LCL), membrane depolarization, and changes in intracellular calcium ion concentration ([Ca2+]i). The rates of superoxide generation by various stimuli, such as formylmethionylleucylphenylalanine (FMLP), phorbol 12-myristate 13-acetate (PMA) and opsonized zymosan (OZ) were different. Superoxide generation and strong chemiluminescence response were observed without addition of any stimuli. This endogenous LCL was inhibited by azide and superoxide dismutase (SOD), but not by uric acid (UA). The intensity of the endogenous LCL decreased with time after isolation from the oral cavity. This decrease was accompanied by the appearance of a FMLP-coupled response. Furthermore, the endogenous activity which produced active oxygen species was maintained in the medium at 4 degrees C for a long period after isolation. From these results, it is suggested that SPMN have the ability to show characteristic responses to various stimuli, and that SPMN play important roles in the defense mechanisms in the oral cavity.  相似文献   

3.
Activated oxygen species produced during merocyanine 540 (MC540)-mediated photosensitization have been examined by electron spin resonance (ESR) spin trapping and by trapping reactive intermediates with salicylic acid using HPLC with electrochemical detection (HPLC-EC) for product analysis. Visible light irradiation of MC540 associated with dilauroylphosphatidylcholine liposomes in the presence of the spin trap, 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) gave an ESR spectrum characteristic of the DMPO-hydroxyl radical spin adduct (DMPO/.OH). Addition of ethanol or methanol produced additional hyperfine splittings due to the respective hydroxyalkyl radical adducts, indicating the presence of free.OH.DMPO/.OH formation was not significantly inhibited by Desferal, catalase, or superoxide dismutase (SOD). Production of DMPO/.OH was strongly inhibited by azide and enhanced in samples prepared with deuterated phosphate buffer (PB-D2O), suggesting that singlet molecular oxygen (1O2) was an important intermediate. When MC540-treated liposomes were irradiated in the presence of salicylic acid (SA), HPLC-EC analysis indicated almost exclusive formation of 2,5-dihydroxybenzoic acid (2,5-DHBA), with production of very little 2,3-DHBA, in contrast to .OH generated by uv photolysis of H2O2, which gave nearly equimolar amounts of the two products. 2,5-DHBA production was enhanced in PB-D2O and inhibited by azide, again consistent with 1O2 intermediacy. 2,5-DHBA formation was significantly reduced in samples saturated with N2 or argon, and such samples showed no D2O enhancement. Ethanol had no effect on 2,5-DHBA production, even when present in large excess. Catalase and SOD also had no effect, and only a small inhibition was observed with Desferal. DMPO inhibited 2,5-DHBA production in a concentration-dependent fashion and enhanced formation of 2,3-DHBA. We propose that 1O2 reacts with DMPO to give an intermediate which decays to form DMPO/.OH and free.OH, and that the reaction between 1O2 and SA preferentially forms the 2,5-DHBA isomer. This latter process may provide the basis for a sensitive analytical method to detect 1O2 intermediacy. Singlet oxygen appears to be the principle activated oxygen species produced during MC540-mediated photosensitization.  相似文献   

4.
Using the electron spin resonance/spin trapping system, 4-pyridyl 1-oxide N-tert-butylnitrone (4-POBN)/ethanol, hydroxyl radical was detected as the alpha-hydroxyethyl spin trapped adduct of 4-POBN, 4-POBN-CH(CH3)OH, from phorbol 12-myristate 13-acetate-stimulated human neutrophils and monocytes without the addition of supplemental iron. 4-POBN-CH(CH3)OH was stable in the presence of a neutrophil-derived superoxide flux. Hydroxyl radical formation was inhibited by treatment with superoxide dismutase, catalase, and azide. Treatment with a series of transition metal chelators did not appreciably alter 4-POBN-CH(CH3)OH, which suggested that hydroxyl radical generation was mediated by a mechanism independent of the transition metal-catalyzed Haber-Weiss reaction. Kinetic differences between transition metal-dependent and -independent mechanisms of hydroxyl radical generation by stimulated neutrophils were demonstrated by a greater rate of 4-POBN-CH(CH3)-OH accumulation in the presence of supplemental iron. Detection of hydroxyl radical from stimulated monocyte-derived macrophages, which lack myeloperoxidase, required the addition of supplemental iron. The addition of purified myeloperoxidase to an enzymatic superoxide generating system resulted in the detection of hydroxyl radical that was dependent upon the presence of chloride and was inhibited by superoxide dismutase, catalase, and azide. These findings implicated the reaction of hypochlorous acid and superoxide to produce hydroxyl radical. 4-POBN-CH(CH3)OH was not observed upon stimulation of myeloperoxidase-deficient neutrophils, whereas addition of myeloperoxidase to the reaction mixture resulted in the detection of hydroxyl radical. These results support the ability of human neutrophils and monocytes to generate hydroxyl radical through a myeloperoxidase-dependent mechanism.  相似文献   

5.
The effects of piroxicam on the production of reactive oxygen species by stimulated phagocytes was studied in whole blood by a chemiluminescence (CL) technique in relation to maximum activity, localization and kinetics of radical generation. We found that piroxicam dose-dependently inhibited total (intra- and extracellular) zymosan-stimulated luminol CL (LCL) at a high stimulant concentration (p = 0.0001). Piroxicam additionally decreased cytochalasin B-reduced LCL, which shows that the effect of the drug should be sought in the extracellular component of the response. Piroxicam inhibited the first phase of extracellular LCL in a dose-dependent manner (p = 0.0001) and revealed itself as an enhancing agent of CL in later time intervals after the start of respiratory burst, in a model system containing horseradish peroxidase (HRP) and sodium azide. It enhanced LCL of a cell-free system, i.e. influenced the CL due to HRP-catalysed decomposition of hydrogen peroxide. It also dose-dependently inhibited the early extracellular superoxide production, evaluated by lucigenin CL (p = 0.022). Piroxicam inhibited the total fMLP-stimulated LCL by 70% approximately and, only by about 30%, the first phase of fMLP-stimulated extracellular LCL, which presupposes an effect on myeloperoxidase-catalysed formation of hypochloric acid. Piroxicam slightly increased the intracellular LCL by phagocytes (p = 0.02), an effect that is probably connected with its ability to induce the release of secondary messengers in signal transduction. In conclusion, the anti-inflammatory effect of piroxicam is probably related to the inhibition of the extracellular generation of superoxide and hypochloric acid in the early stages of phagocyte activation.  相似文献   

6.
Vitamin K3 (menadione) has been found to stimulate diethyl nitrosamine (DEN)-deethylase activity in rat liver microsomes. The vitamin also takes care of the inhibitory effect of the anaerobic conditions as well as those of cytochrome poisons like sodium azide and sodium cyanide, possibly through production of active oxygen species. The enzyme was also stimulated by H2O2 and SOD and inhibited by catalase, thereby suggesting that H2O2 or some derivatives of it may be the active oxygen species involved in the reaction.  相似文献   

7.
Bovine superoxide dismutase (SOD) was inactivated during incubation with phorbol myristate acetate-stimulated neutrophils. In addition, stimulated neutrophils were able to disrupt the SOD structure. Inactivation and structural damage were dependent on the action of hypochlorous acid, an oxidant generated by the myeloperoxidase-hydrogen peroxide-chloride system of neutrophils. Incubation of SOD with stimulated neutrophils lead to long-wavelength fluorescence (ex, 350 nm; em, 450 nm) and the appearance of new structural forms with other isoelectric points. These additional forms possess catalytic activity. Generation of catalytically active new forms of SOD demonstrates the inaccessibility of the active centre of SOD to hypochlorite and may be a reason for the successful application of SOD during anti-inflammatory therapy.  相似文献   

8.
The metabolic disorder, alkaptonuria, is distinguished by elevated serum levels of 2,5-dihydroxyphenylacetic acid (homogentisic acid), pigmentation of cartilage and connective tissue and, ultimately, the development of inflammatory arthritis. Oxygen radical generation during homogentisic acid autoxidation was characterized in vitro to assess the likelihood that oxygen radicals act as molecular agents of alkaptonuric arthritis in vivo. For homogentisic acid autoxidized at physiological pH and above, yielding superoxide (O2-)2 and hydrogen peroxide (H2O2), the homogentisic acid autoxidation rate was oxygen dependent, proportional to homogentisic acid concentration, temperature dependent and pH dependent. Formation of the oxidized product, benzoquinoneacetic acid was inhibited by the reducing agents, NADH, reduced glutathione, and ascorbic acid and accelerated by SOD and manganese-pyrophosphate. Manganese stimulated autoxidation was suppressed by diethylenetriaminepentaacetic acid (DTPA). Homogentisic acid autoxidation stimulated a rapid cooxidation of ascorbic acid at pH 7.45. Hydrogen peroxide was among the products of cooxidation. The combination of homogentisic acid and Fe3+-EDTA stimulated hydroxyl radical (OH.) formation estimated by salicylate hydroxylation. Ferric iron was required for the reaction and Fe3+-EDTA was a better catalyst than either free Fe3+ or Fe3+-DTPA. SOD accelerated OH. production by homogentisic acid as did H2O2, and catalase reversed much of the stimulation by SOD. Catalase alone, and the hydroxyl radical scavengers, thiourea and sodium formate, suppressed salicylate hydroxylation. Homogentisic acid and Fe3+-EDTA also stimulated the degradation of hyaluronic acid, the chief viscous element of synovial fluid. Hyaluronic acid depolymerization was time dependent and proportional to the homogentisic acid concentration up to 100 microM. The level of degradation observed was comparable to that obtained with ascorbic acid at equivalent concentrations. The hydroxyl radical was an active intermediate in depolymerization. Thus, catalase and the hydroxyl radical scavengers, thiourea and dimethyl sulfoxide, almost completely suppressed the depolymerization reaction. The ability of homogentisic acid to generate O2-, H2O2 and OH. through autoxidation and the degradation of hyaluronic acid by homogentisic acid-mediated by OH. production suggests that oxygen radicals play a significant role in the etiology of alkaptonuric arthritis.  相似文献   

9.
Hydroxyl radical (.OH) formation by neutrophils in vitro requires exogenous iron. Two recent studies [Britigan, Rosen, Thompson, Chai & Cohen (1986) J. Biol. Chem. 261, 17026-17032; Winterbourn (1987) J. Clin. Invest. 78, 545-550] both reported that neutrophil degranulation could potentially inhibit the formation of .OH, but differed in their conclusions as to the responsible factor, myeloperoxidase (MPO) or lactoferrin (LF). By using a previously developed spin-trapping system which allows specific on-line detection of superoxide anion (O2-) and .OH production, the impact of MPO and LF release on neutrophil .OH production was compared. When iron-diethylenetriaminepenta-acetic acid-supplemented neutrophils were stimulated with phorbol myristate acetate or opsonized zymosan, .OH formation occurred, but terminated prematurely in spite of continued O2- generation. Inhibition of MPO by azide increased the magnitude, but not the duration, of .OH formation. No azide effect was noted when MPO-deficient neutrophils were used. Anti-LF antibody increased both the magnitude and duration of .OH generation. Pretreatment of neutrophils with cytochalasin B to prevent phagosome formation did not alter the relative impact of azide or anti-LF on neutrophil .OH production. An effect of azide or anti-LF on spin-trapped-adduct stability was eliminated as a confounding factor. These data indicate that neutrophils possess two mechanisms for limiting .OH production. Implications for neutrophil-derived oxidant damage are discussed.  相似文献   

10.
DIDS (4, 4'-diisothiocyanostilbene-2, 2'-disulfonic acid) has been recognized as an anion channel blocker. In this study, we demonstrated that DIDS significantly enhanced the production of free radicals in mouse peritoneal neutrophils. By means of a luminol-chemiluminescence (LCL) monitoring system, DIDS markedly increased LCL which could be suppressed by SOD, sodium azide (NaN3), EGTA and BAPTA-AM and only slightly inhibited by staurosporine (STP). Depletion of the endoplasmic reticulum (ER)-Ca2+ store by means of thapsigargin (TG) had no effects on DIDS-enhanced LCL, but DIDS significantly increased the amount of intracellular free calcium as monitored by means of fura-2 staining. These results indicate that DIDS may enhance free radical production mediated by Ca2+ release from the mitochondria. Both phorbol-12-myristate-13-acetate (PMA) and DIDS can induce increased translocation of p47-phox of the neutrophil to the membrane fraction, which is inhibited by STP pretreatment. Since free radical generation could reduce the cytoplasmic pH (pHi), we further examined whether DIDS was capable of inducing intracellular acidification. The result indicated that DIDS certainly lowered the pHi which was also suppressed by pretreatment with either NaN3 or NaCN, but not by diphenyleneiodonium (DPI). These findings lead us to propose a working hypothesis that DIDS mainly induces superoxide production accompanied by decreasing pHi mediated through a Ca2+ -dependent effect on the mitochondria rather than on NADPH oxidase. Using the lipophilic fluorescent dye DiOC6(3), we showed that DIDS decreased the transitional mitochondrial membrane potential. NaN3, but not STP or pyrrolidine dithiocarbamate (PDTC), antagonized DIDS in the course of decreasing the mitochondrial membrane potential. Taken together, all of these findings imply a possible role of anion channels of the mitochondria in modulating free radical production and intracellular acidification of neutrophils through alteration of the mitochondrial transition membrane potential and Ca2+ -release.  相似文献   

11.
Increased neopterin concentrations in human serum indicate activation of cell-mediated immune response. Earlier we have shown that neopterin enhanced generation of singlet oxygen, hydroxyl radical and nitric oxide in human peripheral blood neutrophils by NADPH-independent pathways. To further investigate a participation of neopterin in reactive species production by neutrophils, we studied its influence on myeloperoxidase (MPO) activity. MPO was isolated from human peripheral blood neutrophils from healthy donors. Generation of reactive species by MPO/H(2)O(2) in Earl's solution (pH=7.2) at 37 degrees C was investigated by monitoring of chemiluminescence using luminol as light emitter. In the MPO/H(2)O(2) system, neopterin increased singlet oxygen in a concentration-dependent manner, but it decreased formation of other oxidizing species. Comparing several oxygen scavengers, formation of reactive species was totally blocked by sodium azide (NaN(3)), both in the presence and in the absence of neopterin. Superoxide dismutase (SOD) and d-mannitol insignificantly decreased chemiluminescence of this reaction, but diazabicyclo[2.2.2]octane (DABCO) strongly inhibited it. We conclude that the effects of neopterin on neutrophils' MPO are directed to increase singlet oxygen and to decrease other reactive species via inhibition of MPO and/or scavenging of reactive species.  相似文献   

12.
Phagocytic leukocytes, such as neutrophils and macrophages release reactive oxygen species (ROS) to the surrounding medium upon appropriate stimulation as part of their cytocidal activity. The release of ROS by inflammatory neutrophils, obtained by peritoneal injection of 12% caseinate-PBS was measured by the reduction of ferricytochrome c and luminol chemiluminescence (LCL). Neutrophils were harvested every 4 hours with cold PBS and stimulated with phorbol myristate acetate (PMA), formyl-methionyl-leucyl-phenylalanine (FMLP) or opsonized zymosan (OZ). On a regimen providing light between 6:00 to 18:00, PMA-stimulated neutrophils (1.0 x 10 7 neutrophil/ml) were found to release twice as much superoxide anion at night as they did during the day (clock time; 2:00 = 1.43 nmol/min vs. clock time 14:00 = 0.65 nmol/min). Neither FMLP- nor OZ-stimulated neutrophils displayed similar fluctuations. Thus, the qualitative and quantitative aspects of ROS generation by activated neutrophils differ significantly from one ligand to another. These results suggest that the effect of neutrophils on microorganisms and the surrounding tissues may differ with the nature of the stimulus and the time the stimulus is given.  相似文献   

13.
Stimulated neutrophils undergo a respiratory burst discharging large quantities of superoxide and hydrogen peroxide. They also release myeloperoxidase, which catalyses the conversion of hydrogen peroxide and Cl- to hypochlorous acid. Human neutrophils stimulated with opsonized zymosan promoted the loss of monochlorodimedon. This loss was entirely due to hypochlorous acid, since it did not occur in Cl(-)-free buffer, was inhibited by azide and cyanide, and was enhanced by adding exogenous myeloperoxidase. It was not inhibited by desferal, diethylenetriaminepentaacetic acid, mannitol or dimethylsulfoxide, which excluded involvement of the hydroxyl radical. Approx. 30% of the detectable superoxide generated was converted to hypochlorous acid. As expected, formation of hypochlorous acid was completely inhibited by catalase, but it was also inhibited by up to 70% by superoxide dismutase. Superoxide dismutase also inhibited the production of hypochlorous acid by neutrophils stimulated with phorbol myristate acetate. Our results indicate that generation of superoxide by neutrophils enables these cells to enhance their production of hypochlorous acid. Furthermore, inhibition of neutrophil processes by superoxide dismutase and catalase does not necessarily implicate the hydroxyl radical. It is proposed that superoxide may potentiate oxidant damage at inflammatory sites by optimizing the myeloperoxidase-dependent production of hypochlorous acid.  相似文献   

14.
Phagocytic leukocytes, such as neutrophils and macrophages release reactive oxygen species (ROS) to the surrounding medium upon appropriate stimulation as part of their cytocidal activity. The release of ROS by inflammatory neutrophils, obtained by peritoneal injection of 12% caseinate-PBS was measured by the reduction of ferricytochrome c and luminol chemiluminescence (LCL). Neutrophils were harvested every 4 hours with cold PBS and stimulated with phorbol myristate acetate (PMA), formyl-methionyl-leucyl-phenylalanine (FMLP) or opsonized zymosan (OZ). On a regimen providing light between 6:00 to 18:00, PMA-stimulated neutrophils (1.0 x 10 7 neutrophil/ml) were found to release twice as much superoxide anion at night as they did during the day (clock time; 2:00 = 1.43 nmol/min vs. clock time 14:00 = 0.65 nmol/min). Neither FMLP- nor OZ-stimulated neutrophils displayed similar fluctuations. Thus, the qualitative and quantitative aspects of ROS generation by activated neutrophils differ significantly from one ligand to another. These results suggest that the effect of neutrophils on microorganisms and the surrounding tissues may differ with the nature of the stimulus and the time the stimulus is given.  相似文献   

15.
Using a spin-trapping technique, we have examined free-radical formation by mitomycin C and its analogs, BMY 25282 and BMY 25067, in rat cardiac microsomes and isolated perfused rat hearts. All three drugs stimulated 2--4-fold OH radical formation in cardiac microsomes which was inhibited by SOD and catalase. Superoxide anion radical was also detected in the presence of diethylenetetraaminopentaacetic acid. Addition of DMSO yielded methyl radicals, thus indicating the production of free OH under these conditions. Similar stimulation of OH formation (2--3-fold) in the perfusates from rat hearts was detected with all three drugs. Perfusion with catalase (550 U/ml) completely suppressed the OH signal both in the presence and absence of the drugs, thus suggesting the intermediacy of hydrogen peroxide. However, BMY 25067-induced OH formation was more sensitive to inhibition by superoxide dismutase (SOD) and the iron chelator ICRF-187. Perfusion with DMSO produced methyl radicals at the expense of OH in the presence of all three drugs. SOD and catalase inhibited DMPO-OH signals, indicating that most of the OH formation was extracellular in this setting. While mitomycin C and BMY 25067 (up to 10 microM) did not affect the heart rate, perfusion with 10 microM BMY 25282 caused acute arrhythmia and cardiac standstill within 20 min. An initial surge in OH formation (2-fold) accompanied this cardiotoxic effect. Both the arrhythmia and the free radical signal were partially blocked by SOD, catalase and ICRF-187, indicating that iron-dependent oxygen radical formation from BMY-25282 (and possibly other compounds) is involved, in part, in inducing toxic manifestations in the rat heart and possibly in clinic.  相似文献   

16.
Human neutrophils stimulated with opsonized zyrnosan promoted hypochlorous acid (HOCl)-dependent loss of monochlorodimedon. Formation of HOCl was completely inhibited by catalase, and it was also inhibited up to 70% by SOD. There was no inhibition by desferal, DTPA, mannitol or dimethylsulphoxide. which excluded the involvement of -OH. Our results indicate that generation of O2-by neutrophils enables these cells to enhance their production of HOCl. Furthermore, inhibition of neutrophil processes by SOD and catalase does not necessarily implicate -OH. We propose that O2-may potentiate oxidant damage at inflammatory sites by boosting the rnyeloperoxidase-dependent production of HOCl  相似文献   

17.
Appropriately stimulated neutrophils release peroxidase and undergo a respiratory burst to form hydrogen peroxide (H2O2) and hydroxyl radicals (OH). We report here that both the myeloperoxidase-H2O2-halide system and OH released in this way can degrade the leukotrienes (LT) formed by neutrophils. More LTB4 and LTC4 were recovered from the supernatants of chronic granulomatous disease neutrophils (which are unable to respond to stimulation with a respiratory burst) than from normal or myeloperoxidase-deficient neutrophils when stimulated with the calcium ionophore A23187. When radiolabeled LTC4 was added, 72% of the LTC4 was recovered from the chronic granulomatous disease cells in contrast to 0% from the myeloperoxidase-deficient and normal cells. Inhibitor studies using catalase, superoxide dismutase, azide, mannitol, or ethanol suggested that LTC4 degradation was mediated primarily by the myeloperoxidase system in normal cells and by OH in myeloperoxidase-deficient cells. LTC4 degradation by the cell-free myeloperoxidase-H2O2-halide system and the OH -generating acetaldehyde-xanthine oxidase-Fe2+ system had inhibitor profiles comparable to normal and myeloperoxidase-deficient neutrophils, respectively. LTC4 degradation products formed by the stimulated neutrophils and model systems included the 5-(S), 12-(R)- and 5-(S), 12-(S)-6-trans-isomers of LTB4. Thus phagocytes may modulate LT activity in inflammatory sites by the inactivation of these potent biologic mediators by at least two oxidative mechanisms.  相似文献   

18.
The effect of scavengers of oxygen radicals on canine cardiac sarcoplasmic reticulum (SR) Ca2+ uptake velocity was investigated at pH 6.4, the intracellular pH of the ischemic myocardium. With the generation of oxygen radicals from a xanthine-xanthine oxidase reaction, there was a significant depression of SR Ca2+ uptake velocity. Xanthine alone or xanthine plus denatured xanthine oxidase had no effect on this system. Superoxide dismutase (SOD), a scavenger of .O2-, or denatured SOD had no effect on the depression of Ca2+ uptake velocity induced by the xanthine-xanthine oxidase reaction. However, catalase, which can impair hydroxyl radical (.OH) formation by destroying the precursor H2O2, significantly inhibited the effect of the xanthine-xanthine oxidase reaction. This effect of catalase was enhanced by SOD, but not by denatured SOD. Dimethyl sulfoxide (Me2SO), a known .OH scavenger, completely inhibited the effect of the xanthine-xanthine oxidase reaction. The observed effect of oxygen radicals and radical scavengers was not seen in the calmodulin-depleted SR vesicles. Addition of exogenous calmodulin, however, reproduced the effect of oxygen radicals and the scavengers. The effect of oxygen radicals was enhanced by the calmodulin antagonists (compounds 48/80 and W-7) at concentrations which showed no effect alone on Ca2+ uptake velocity. Taken together, these findings strongly suggest that .OH, but not .O2-, is involved in a mechanism that may cause SR dysfunction, and that the effect of oxygen radicals is calmodulin dependent.  相似文献   

19.
Reactive oxygen species (ROS) play important roles in the defense mechanism against infection and in the pathogenesis of various diseases. Although chemical properties of ROS generated by leukocytes have been studied extensively, methods available for their analysis are not sufficiently sensitive. We found that 8-amino-5-chloro-7-phenylpyrido[3,4-d]pyridazine-1,4-(2H,3H)dione (L-012) reacted with various types of ROS generated by activated neutrophils in human blood and oral cavity, and from peritoneal cavity of the rat, and developed strong chemiluminescence (CHL). Under physiological conditions, opsonized zymosan-dependent CHL intensity of L-012 in human blood and rat peritoneal neutrophils was about 100 and 10 times higher than that of luminol and luciferin analog MCLA, respectively. Phorbol ester-activated CHL of oral neutrophils was also higher with L-012 than that with luminol and MCLA. The presence of either superoxide dismutase, catalase, uric acid, deferoxamine, or azide decreased CHL intensity of L-012 by 52, 57, 57, 63, and 91%, respectively. Kinetic analysis revealed that L-012 developed CHL predominantly by reacting with hydroxyl radical and hypochlorite. Thus, highly sensitive L-012 permits studies on ROS generation by complex biological systems, such as leukocytes, and on the role of ROS in the pathogenesis of various diseases.  相似文献   

20.
We have compared various mitogenic stimuli for their ability to induce hydrogen peroxide (H2O2) and superoxide anion (O2-) production by PBMC and the effect of these reactive oxygen species and hydroxyl radical (OH.) has been assessed on proliferation. Our results show that pokeweed mitogen (PWM) stimulated PBMC to release H2O2 which interfered with proliferation since inclusion of catalase enhanced PBMC thymidine uptake. In contrast, phytohemagglutinin (PHA) and monoclonal antibody to CD3 (alpha CD3) did not induce PBMC to generate H2O2. O2- release by PBMC, which is readily induced by phorbol myristate acetate (PMA), did not occur when the cells were stimulated with PWM, PHA, or alpha CD3. In correlation, the O2- scavenger enzyme superoxide dismutase (SOD) had no effect on the proliferative response of the cells to the same mitogens, whereas it impaired the thymidine uptake of PMA-stimulated PBMC. A regulatory role for OH. was implied by studies using a battery of OH scavengers known to inhibit PMA-stimulated PBMC proliferation. OH. scavengers markedly inhibited the lymphoblastic transformation of alpha CD3-stimulated cells but had little or no effect on PHA- and PWM-stimulated PBMC. Thus, one manner by which PBMC proliferation is regulated is through oxygen free radical production which varies depending on the type of mitogenic stimulus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号