首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction of DNA with various neutral pH, amine-based buffers has been analyzed by free solution capillary electrophoresis, using a mixture of a plasmid-sized DNA molecule and a small DNA oligonucleotide as the reporter system. The two DNAs migrate as separate, nearly Gaussian-shaped peaks in 20-80 mM TAE (TAE, Tris-acetate-EDTA; Tris, tris[hydroxymethyl]aminomethane) buffer. The separation between the peaks gradually increases with increasing TAE buffer concentration because of differences in solvent friction between large and small DNA molecules. The two DNAs form complexes with the borate ions in TBE (Tris-borate-EDTA) buffer, with mobilities that depend on the DNA/borate ratio. In 45 mM TBE buffer, the two DNAs comigrate as a single sharp peak, with a mobility that is faster than either of the constituent DNAs in the same buffer. Hence, the mixed DNA-borate complex is stabilized by the binding of additional borate ions, possibly forming bridges between the different DNAs. The mixed DNA-borate complex is gradually dissociated into its component DNAs by increasing the TBE concentration, possibly because the borate binding sites become saturated at high buffer concentrations. Other neutral pH, amine-based buffers, such as Mops (3-[N-morpholino]propanesulfonic acid), Hepes (N-[2-hydroxyethyl]piperazine-N'-[2-ethanesulfonic acid]), Bes (N,N-bis[2-hydroxyethyl]-2-aminoethanesulfonic acid), Tes (N-tris[hydroxymethyl]methyl-2-aminoethanesulfonic acid), and tricine (N-tris[hydroxymethyl]methylglycine) also form complexes with DNA, giving distorted peaks in the electropherograms. The combined results indicate that borate buffers and most neutral pH, amine-based buffers interact with DNA.  相似文献   

2.
Electrophoresis through agarose and polyacrylamide-type gels is the standard method to separate, identify, and purify nucleic acids. Properties of electrophoresis buffers such as pH, ionic strength, and composition affect performance. The buffers in use contain a weak acid or weak base buffered by a compound with a dissimilar pK. Herein, three pK-matched buffers were developed, each containing two effective buffering components: one weak base and one weak acid which have similar pKa at 25 degrees C (within 0.3 pK units): (i) Ethanolamine/Capso, pH 9.6; (ii) triethanolamine/Tricine, pH 7.9; and (iii) Bis-Tris/Aces, pH 6.7. On agarose gels, the buffers in various concentrations were tested for separation of double-stranded DNA fragments with various DNA markers, agarose gel concentrations, and field strengths. Mobility was inversely proportional to the logarithm of molecular weight. The buffers provided high resolution without smearing at more dilute concentration than is possible with standard TAE (Tris/acetate, pH 8.0) or TBE (Tris/borate, pH 8.3) buffers. The buffers were also tested in 7 M urea denaturing LongRanger sequencing gels and in nondenaturing polyacrylamide SSCP gels. The pK-matched buffers provide good separation and high resolution, at a broad range of potential pH values. In comparison to TAE and TBE, pK-matched buffers provide higher voltage and current stability, lower working concentration, more concentrated stock solutions (up to 200x), and lower current per unit voltage, resulting in less heat generation.  相似文献   

3.
M G Fried  G Liu 《Nucleic acids research》1994,22(23):5054-5059
The gel electrophoresis mobility shift assay is widely used for qualitative and quantitative characterization of protein complexes with nucleic acids. Often it is found that complexes that are short-lived in free solution (t1/2 of the order of minutes) persist for hours under the conditions of gel electrophoresis. We have investigated the influence of polyacrylamide gels on the pseudo first-order dissociation kinetics of complexes containing the E.coli cyclic AMP receptor protein (CAP) and lactose promoter DNA. Within the gel matrix, kdiss decreased with increasing [polyacrylamide] and the order of the reaction was changed. In free solution, kdiss was proportional to [DNA]2, while in 5% gels, kdiss was proportional to [DNA]0.3. In gels of [polyacrylamide] > or = 10%, kdiss was nearly independent of [DNA] until fragment concentrations exceeded 0.1 microM. Even in the absence of competing DNA, kdiss(gel) < kdiss(solution). These results suggest that the lifetime of CAP-DNA complexes in free solution is limited by their encounter frequency with molecules of DNA or with protein-DNA complexes; some or all of the stabilization observed in gels may be due to a reduction in this frequency.  相似文献   

4.
Spatial compression among the longer DNA fragments occurs during DNA electrophoresis in agarose and non-agarose gels when using certain ions in the conductive buffer, impairing the range of fragment sizes resolved well in a single gel. Substitutions using various polyhydroxyl anions supported the underlying phenomenon as the complexation of Lewis acids to DNA. We saw significant improvements using conditions (lithium borate 10 mM cations, pH 6.5) favoring the formation of borate polyanions and having lower conductance and Joule heating, delayed electrolyte exhaustion, faster electrophoretic run-speed, and sharper separation of DNA bands from 100bp to 12 kb in a single run.  相似文献   

5.
Oriented agarose gels were prepared by applying an electric field to molten agarose while it was solidifying. Immediately afterwards, DNA samples were applied to the gel and electrophoresed in a constant unidirectional electric field. Regardless of whether the orienting field was applied parallel or perpendicular to the eventual direction of electrophoresis, the mobilities of linear and supercoiled DNA molecules were either faster (80% of the time) or slower (20% of the time) than observed in control, unoriented gels run simultaneously. The difference in mobility in the oriented gel (whether faster or slower) usually increased with increasing DNA molecular weight and increasing voltage applied to orient the agarose matrix. In perpendicularly oriented gels linear DNA fragments traveled in lanes skewed toward the side of the gel; supercoiled DNA molecules traveled in straight lanes. If the orienting voltage was applied parallel to the direction of electrophoresis, both linear and supercoiled DNA molecules migrated in straight lanes. These effects were observed in gels cast from different types of agarose, using various agarose concentrations and two different running buffers, and were observed both with and without ethidium bromide incorporated in the gel. Similar results were observed if the agarose was allowed to solidify first, and the orienting electric field was then applied to the gel for several hours before the DNA samples were added and electrophoresed. The results suggest that the agarose matrix can be oriented by electric fields applied to the gel before and probably during electrophoresis, and that orientation of the matrix affects the mobility and direction of migration of DNA molecules. The skewed lanes observed in the perpendicularly oriented gels suggest that pores or channels can be created in the matrix by application of an electric field. The oriented matrix becomes randomized with time, because DNA fragments in oriented and unoriented gels migrated in straight lanes with identical velocities 24 hours later.  相似文献   

6.
Orientation of DNA molecules in agarose gels by pulsed electric fields   总被引:5,自引:0,他引:5  
The electric birefringence of DNA restriction fragments of three different sizes, 622, 1426, and 2936 base pairs, imbedded in agarose gels of different concentrations, was measured. The birefringence relaxation times observed in the gels are equal to the values observed in free solution, if the median pore diameter of the gel is larger than the effective hydrodynamic length of the DNA molecule in solution. However, if the median pore diameter is smaller than the apparent hydrodynamic length, the birefringence relaxation times increase markedly, becoming equal to the values expected for the birefringence relaxation of fully stretched DNA molecules. This apparent elongation indicates that end-on migration, or reptation is a likely mechanism for the electrophoresis of large DNA molecules in agarose gels. The relaxation times of the stretched DNA molecules scale with molecular weight (or contour length) as N2.8, in reasonable agreement with reptation theories.  相似文献   

7.
Abstract

The electric birefringence of DNA restriction fragments of three different sizes, 622,1426, and 2936 base pairs, imbedded in agarose gels of different concentrations, was measured. The birefringence relaxation times observed in the gels are equal to the values observed in free solution, if the median pore diameter of the gel is larger than the effective hydrodynamic length of the DNA molecule in solution. However, if the median pore diameter is smaller than the apparent hydrodynamic length, the birefringence relaxation times increase markedly, becoming equal to the values expected for the birefringence relaxation of fully stretched DNA molecules. This apparent elongation indicates that end-on migration, or reptation is a likely mechanism for the electrophoresis of large DNA molecules in agarose gels. The relaxation times of the stretched DNA molecules scale with molecular weight (or contour length) as N2.8, in reasonable agreement with reptation theories.  相似文献   

8.
The transient electric birefringence of low electroendosmosis (LE) agarose gels oriented by pulsed unidirectional electric fields was described in detail in Part I [J. Stellwagen and N. C. Stellwagen (1994), Biopolymers, Vol. 34, p. 187]. Here, the birefringence of LE agarose gels in rapidly reversing electric fields, similar in amplitude and duration to those used for field inversion gel electrophoresis, is reported. Symmetric reversing electric fields cause the sign of the birefringence of LE agarose gels, and hence the direction of orientation of the agarose fibers, to Oscillate in phase with the applied electric field. Because of long-lasting memory effects, the alternating sign of the birefringence appears to be due to metastable changes in gel structure induced by the electric field. If the reversing field pulses are equal in amplitude but different in duration, the orientation behavior depends critically on the applied voltage. If E < 7 V/cm, the amplitude of the birefringence gradually decreases with increasing pulse number and becomes unmeasurably small. However, if E > 7 V/cm, the amplitude of the birefringence increase more than 10-fold after ~ 20 pulses have been applied to the gel, suggesting that a cooperative change in gel structure has occurred. Because there is no concomitant change birefringence must be due to an increase in the number of agarose fibers and /or fiber bundles orienting in the lectric field, which in turn indicates a cooperatice breakdown of the noncovalent “junction zones” that corss-link the fibers in to the fgel matrix. The sign of the birefringence of LE agarose gels is always positive after extensive junction zone breakdown, indicating that the agarose fibers and fiber bundles preferentially orient parallel to the lectric field when they are freed from the constraints of the gel matrix. Three other gel-forming polymers, high electroendosmosis (HEEO) agarose (a more highly changed agarose), β-carrageenan (a stereoisomer of agarose), and polyacrylamide (a chemically corss-linked polymer) were alos studied in unidirectional and rapidly reversing electric fields. The birefringence of HEEO agarose backbone chain. The β-carrageenan gels exhibit variable orientation behavior in reversing electric fields, suggesting that its internal gel structure is not as tightly interconnected as that of agaroise gels. Both HEEO agarose and β-carrageenan gels exhibit a large increase in the amplitude of the birefringence with increasing pulse number when asymmetric reversing pulses > 7 V/cm are applied to the gels, suggesting that junction zone breakdown in a common feature of polysaccharide gels. Chemically cross-linked polyacrylamide gels exhibit very small birefringence signals, indicating that very little orientation occurs in pulsed lectric fields. The sign of the birefringence is independent of the polarity of the lectric field, as expected from the Kerr law, and normal orientation behavior is observed in reversing electric fields. Hence, the anomalous change in sign of the birefringence observed for agarose gels in reversing electric fields must be due to the metastable junction zones in the agarose gel matrix, which allow gel fiber rearrangements to occur. © 1994 John Wiley & Sons, Inc.  相似文献   

9.
P Serwer  S J Hayes  E T Moreno  C Y Park 《Biochemistry》1992,31(36):8397-8405
Although the icosahedral bacteriophage T7 capsid has a diameter (58 nm) that is 234-fold smaller than the length of the linear, double-stranded T7 DNA, binding of a T7 capsid to T7 DNA is found here to have dramatic effects on the migration of the DNA during both pulsed field agarose gel electrophoresis (PFGE; the field inversion mode is used) and constant field agarose gel electrophoresis (CFGE). For these studies, capsid-DNA complexes were obtained by expelling DNA from mature bacteriophage T7; this procedure yields DNA with capsids bound at a variable position on the DNA. When subjected to CFGE at 2-6 V/cm in 0.20-2.5% agarose gels, capsid-DNA complexes arrest at the electrophoretic origin. Progressively lowering the electrical potential gradient to 0.5 V/cm results in migration; most complexes form a single band. The elevated electrical potential gradient (3 V/cm) induced arrest of capsid-DNA complexes is reversed when PFGE is used instead of CFGE. For some conditions of PFGE, the mobility of capsid-DNA complexes is a function of the position of the capsid on the DNA. During either CFGE (0.5 V/cm) or PFGE, capsid-DNA complexes increasingly separate from capsid-free DNA as the percentage of agarose increases. During these studies, capsid-DNA complexes are identified by electron microscopy of enzymatically-digested pieces of agarose gel; this is apparently the first successful electron microscopy of DNA from an agarose gel.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Interactions between proteins and nucleic acids are frequently analyzed using electrophoretic mobility shift assays (EMSAs). This technique separates bound protein:nucleic acid complexes from free nucleic acids by electrophoresis, most commonly using polyacrylamide gels. The current study utilizes recent advances in agarose gel electrophoresis technology to develop a new EMSA protocol that is simpler and faster than traditional polyacrylamide methods. Agarose gels are normally run at low voltages (∼10 V/cm) to minimize heating and gel artifacts. In this study we demonstrate that EMSAs performed using agarose gels can be run at high voltages (≥20 V/cm) with 0.5 × TB (Tris-borate) buffer, allowing for short run times while simultaneously yielding high band resolution. Several parameters affecting band and image quality were optimized for the procedure, including gel thickness, agarose percentage, and applied voltage. Association of the siRNA-binding protein p19 with its target RNA was investigated using the new system. The agarose gel and conventional polyacrylamide gel methods generated similar apparent binding constants in side-by-side experiments. A particular advantage of the new approach described here is that the short run times (5–10 min) reduce opportunities for dissociation of bound complexes, an important concern in non-equilibrium nucleic acid binding experiments.  相似文献   

11.
Two methods which permit detection by autoradiography of small 32P-labeled DNA fragments resolved by agarose gel electrophoresis are described. Agarose gel electrophoresis poses problems for autoradiography as (i) the gels are normally too thick to allow autoradiography without being dried first, and (ii) fragments of DNA of 1000 bp or less in length are readily lost during drying. In this study DNA fragments as small as 121 bp have been retained in agarose gels upon drying. This has been achieved by either (i) first fixing the DNA with the cationic detergent cetyltrimethylammonium bromide, or (ii) drying the agarose gels onto Zeta-Probe charge-modified membranes.  相似文献   

12.
The diffusion coefficients (D) of different types of macromolecules (proteins, dextrans, polymer beads, and DNA) were measured by fluorescence recovery after photobleaching (FRAP) both in solution and in 2% agarose gels to compare transport properties of these macromolecules. Diffusion measurements were conducted with concentrations low enough to avoid macromolecular interactions. For gel measurements, diffusion data were fitted according to different theories: polymer chains and spherical macromolecules were analyzed separately. As chain length increases, diffusion coefficients of DNA show a clear shift from a Rouse-like behavior (DG congruent with N0-0.5) to a reptational behavior (DG congruent with N0-2.0). The pore size, a, of a 2% agarose gel cast in a 0.1 M PBS solution was estimated. Diffusion coefficients of the proteins and the polymer beads were analyzed with the Ogston model and the effective medium model permitting the estimation of an agarose gel fiber radius and hydraulic permeability of the gels. Not only did flexible macromolecules exhibit greater mobility in the gel than did comparable-size rigid spherical particles, they also proved to be a more useful probe of available space between fibers.  相似文献   

13.
The electrophoresis of circular DNA, ranging in size from 4.4 kilobase pairs (kbp) to 220 kbp, was studied in agarose gels. Bacterial artificial chromosome (BAC) DNA was used as a source of large supercoiled and open circular (relaxed) forms. The open circles above approximately 50 kbp were trapped at the sample wells of 1% agarose gels during electrophoresis at 3 V/cm. Field inversion gel electrophoresis (FIGE) was used to relieve the trapping of the open circles in the gels. Using FIGE (30 s forward pulse time), open circles with sizes of 115 and 220 kbp required reverse pulse times of 3 and 6 s, respectively, to free the circles from open-ended gel fibers. A minimum in the gel velocity of the open circles was measured at approximately 20 kbp. Open circles below approximately 20 kbp migrated slower than the supercoiled forms, and above 20 kbp the order was reversed. These results indicate that when the size of the open circles exceeded the average pore size of a gel and it was forced to span multiple pores, the open circles gained a mobility advantage. Decreasing the ionic strength of the electrophoresis buffer significantly decreased the mobility of the smaller circles and slightly increased the mobility of the larger circles.  相似文献   

14.
Labeled DNA restriction fragments excised from agarose or bisacrylylcystamine-acrylamide gels can be used for hybridization to nitrocellulose-bound DNA without eliminating the gel matrix. A gel slice containing the labeled fragment is excised, dissolved by heating at 105 degrees C (in the presence of beta-mercaptoethanol for bisacrylylcystamine-acrylamide gels), and added to the hybridization mixture. The presence of agarose or polyacrylamide in the solution does not inhibit hybridization. The method is simple, rapid, and allows complete recovery of the probe.  相似文献   

15.
Previous workers have shown that oligosaccharides and glycopeptides can be separated by electrophoresis in buffers containing borate ions. However, normal fluorography of tritium-labeled structures cannot be performed because the glycans are soluble and can diffuse during equilibration with scintillants. This problem has been circumvented by equilibration of the gel with 2,5-diphenyloxazole (PPO) prior to electrophoresis. The presence of PPO in the gel during electrophoresis does not alter mobility of the glycopeptides and oligosaccharides. After electrophoresis, the gel is simply dried and fluorography performed. This allows sensitive and precise comparisons of labeled samples in parallel lanes of a slab gel and, since mobilities are highly reproducible, between different gels. The procedure is preparative in that after fluorography the gel bands can be quantitatively eluted for further study, without any apparent modification by the procedure. In this report, the procedure is illustrated by fractionation of both neutral and anionic glycopeptides produced by the cellular slime mold Dictyostelium discoideum.  相似文献   

16.
The interaction between a cationic poly(amido amine) (PAMAM) dendrimer of generation 4 and double-stranded salmon sperm DNA in 10 mM NaBr solution has been investigated using dynamic light scattering (DLS) and steady-state fluorescence spectroscopy. The structural parameters of the formed aggregates as well as the complex formation process were studied in dilute solutions. When DNA is mixed with PAMAM dendrimers, it undergoes a transition from a semiflexible coil to a more compact conformation due to the electrostatic interaction present between the cationic dendrimer and the anionic polyelectrolyte. The DLS results reveal that one salmon sperm DNA molecule forms a discrete aggregate in dilute solution with several PAMAM dendrimers with a mean apparent hydrodynamic radius of 50 nm. These discrete complexes coexist with free DNA at low molar ratios of dendrimer to DNA, which shows that cooperativity is present in the complex formation. The formation of the complexes was confirmed by agarose gel electrophoresis measurements. DNA in the complexes was also found to be significantly more protected against DNase catalyzed digestion compared to free DNA. The number of dendrimers per DNA chain in the complexes was found to be approximately 35 as determined by steady-state fluorescence spectroscopy.  相似文献   

17.
Electrophoretic mobility of DNA through polyacrylamide as well as agarose gels is greatly increased by sodium dodecyl sulfate (SDS). DNA molecules well beyond the conventionally separable size limits are separated readily and rapidly by gel electrophoresis with SDS in a conventional static electric field. Furthermore in optimal concentration gels DNA molecules of similar molecular sizes are separated better from one another in the presence of SDS than without it. Evidence is presented that SDS may act at least in part by altering conformation of DNA. This simple and readily available means for high resolution separation of hitherto impossible sizes of DNA molecules in polyacrylamide and agarose gels in an ordinary static electric field should find general use in molecular genetic analyses. Structural analyses of DNA-protein complexes are also facilitated by virtue of the simultaneous separation of the DNA and protein components on the same gel lane.  相似文献   

18.
A fluorographic procedure for the detection of [3H]thymidine-labeled deoxyribonucleic acids electrophoresed in agarose gels was developed. 2,5-Diphenyloxazole (PPO) was added to the agarose solution before pouring of the gel for electrophoresis. This procedure did not interfere with the electrophoretic mobility of the DNA molecules. The radioactive detection efficiency was found to be improved over an existing procedure whereby the agarose gel was infused with PPO after electrophoresis with the aid of acetic acid.  相似文献   

19.
A study of gellan has been made using the technique of photon correlation spectroscopy. It has been confirmed that gellan gels are largely stationary at a molecular level like other polysaccharide gels and quite unlike the gels of flexible polymers such as polyacrylamide. Solution-gel transitions of deacetylated gellan in 0.025MNaCl have been studied both as a function of concentration and temperature, and the results compared with those of a parallel investigation of agarose. The interstitial spaces within gellan gels have also been studied by measuring the diffusion coefficients of dextran fractions within the gels. Since all gels are nonergodic systems, the theory of dynamic light scattering from such systems is discussed insofar as it affects the present work. It has been shown that the gellan and agarose aqueous systems are fundamentally different, in that agarose does not from a solution at very low concentrations, but splits up into macroscopic gel particles. At very low concentrations, gellan forms a solution in the presence of both gelleing and nongelling ions, the molecules of which shows little change in hydrodynamic diameter with temperature in the range 20–80°C. At higher concentrations where gels are formed, both gellan and agarose exhibit hystersis in their tempertature transitions from gel to solution and solution to gel, the solution being of large molecular aggregates. The transitions are sharp, but in both cases ther is a continous rearrangement in the structural morphology over the entire temperature range on heating, rendering the system more homogeneous prior to dissociation. In the case of gellan, however, there are two distincit phases in these structural changes—this is not true of agarose. The mean mass per unit length of the gellan fibre in the presence of 0.025M NaCl is 19 k daltons/nm at 0.7% concentration and varies with concentration to the power 0.15. The mass per unit length of the agarose fibre is much larger (ca. 110 k Daltons/nm), this difference being consistent with the difference in properties at very low concentrations. © 1994 John Wiley & Sons, Inc.  相似文献   

20.
B Akerman 《Biophysical journal》1998,74(6):3140-3151
Electrophoretic velocity and orientation have been used to study the electric-field-induced trapping of supercoiled and relaxed circular DNA (2926 and 5386 bp) in polyacrylamide gels (5% T, 3.3% C) at 7.5-22.5 V/cm, using as controls linear molecules of either the same contour length or the same radius of gyration. The circle-specific trapping is reversible. From the duration of the reverse pulse needed to detrap the molecules, the average trap depth is estimated to be 90 A, which is consistent with the molecular charge and the field strengths needed to keep molecules trapped. Trapped circles exhibit a strong field alignment compared to the linear form, and there is a good correlation between the enhanced field alignment for the circles and the onset of trapping in both constant and pulsed fields. The circles do not exhibit the orientation overshoot response to a field pulse seen with linear DNA, and the rate of orientation growth scales as E(-2+/-0.1) with the field, as opposed to E(-1.1+/-0.1) for the linear form. These results show that the linear form migrates by cyclic reptation, whereas the circles most likely are trapped by impalement on gel fibers. This proposal is supported by very similar velocity and orientation behavior of circular DNA in agarose gels, where impalement has been deemed more likely because of stiffer gel fibers. The trapping efficiency is sensitive to DNA topology, as expected for impalement. In polyacrylamide the supercoiled form (superhelical density sigma = -0.05) has a two- to fourfold lower probability of trapping than the corresponding relaxed species, whereas in agarose gels the supercoiled form is not trapped at all. These results are consistent with existing data on the average holes in the plectonemic supercoiled structures and the fiber thicknesses in the two gel types. On the basis of the topology effect, it is argued that impalement during pulsed-field electrophoresis in polyacrylamide gels may be useful for the separation of more intricate DNA structures such as knots. The results also indicate that linear dichroism on field-aligned molecules can be used to measure the supercoiling angle, if relaxed DNA circles are used as controls for the global degree of orientation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号