首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
There is ample evidence that deregulation of apoptosis results in the development, progression, and/or maintenance of cancer. Since many apoptotic regulatory genes (e.g. bcl-x) code for alternatively spliced protein variants with opposing functions, the manipulation of alternative splicing presents a unique way of regulating the apoptotic response. Here we have targeted oligonucleotides antisense to the 5'-splice site of bcl-x(L), an anti-apoptotic gene that is overexpressed in various cancers, and shifted the splicing pattern of Bcl-x pre-mRNA from Bcl-x(L) to Bcl-x(S), a pro-apoptotic splice variant. This approach induced significant apoptosis in PC-3 prostate cancer cells. In contrast, the same oligonucleotide treatment elicited a much weaker apoptotic response in MCF-7 breast cancer cells. Moreover, although the shift in Bcl-x pre-mRNA splicing inhibited colony formation in both cell lines, this effect was much less pronounced in MCF-7 cells. These differences in responses to oligonucleotide treatment were analyzed in the context of expression of Bcl-x(L), Bcl-x(S), and Bcl-2 proteins. The results indicate that despite the presence of Bcl-x pre-mRNA in a number of cell types, the effects of modification of its splicing by antisense oligonucleotides vary depending on the expression profile of the treated cells.  相似文献   

3.
Alternative splicing plays an important role in the control of apoptosis. A number of genes related to apoptosis undergo alternative splicing. Among them, the apoptotic regulator Bcl-x produces two major isoforms, Bcl-xL and Bcl-xS, through the alternative splicing of exon 2 in its pre-mRNA. These isoforms have antagonistic function in apoptotic pathway; Bcl-xL is pro-apoptotic, while Bcl-xS is anti-apoptotic. The balanced ratio of two isoforms is important for cell survival. However, regulatory mechanisms of Bcl-x splicing remain poorly understood. Using a mini-gene system, we have found that a 105 nt exonic region (E3b) located within exon 3 affects exon 2 splicing in the Bcl-x gene. Further deletion and mutagenesis studies demonstrate that this 105 nt sequence contains various functional elements which promote skipping of exon 2b. One of these elements forms a stem-loop structure that stimulates skipping of exon 2b. Furthermore our results prove that the stem-loop structure functions as an enhancer in general pre-mRNA splicing. We conclude that we have identified a cis-regulatory element in exon 3 that affects splicing of exon 2 in the Bcl-x gene. This element could be potentially targeted to alter the ratio of Bcl-xL and Bcl-xS for treatment of tumors through an apoptotic pathway.  相似文献   

4.
Overexpression of Bcl-xL, an anti-apoptotic member of the Bcl-2 family, negatively correlates with the sensitivity of various cancers to chemotherapeutic agents. We show here that high levels of expression of Bcl-xL promoted apoptosis of cells treated with an antisense oligonucleotide (5'Bcl-x AS) that shifts the splicing pattern of Bcl-x pre-mRNA from the anti-apoptotic variant, Bcl-xL, to the pro-apoptotic variant, Bcl-xS. This surprising finding illustrates the advantage of antisense-induced modulation of alternative splicing versus down-regulation of targeted genes. It also suggests a specificity of the oligonucleotide effects since non-cancerous cells with low levels of Bcl-xL should resist the treatment. 5'Bcl-x AS sensitized cells to several antineoplastic agents and radiation and was effective in promoting apoptosis of MCF-7/ADR cells, a breast cancer cell line resistant to doxorubicin via overexpression of the mdr1 gene. Efficacy of 5'Bcl-x AS combined with chemotherapeutic agents in the PC3 prostate cancer cell line may be translated to clinical prostate cancer since recurrent prostate cancer tissue samples expressed higher levels of Bcl-xL than benign prostate tissue. Treatment with 5'Bcl-x AS may enhance the efficacy of standard anti-cancer regimens and should be explored, especially in recurrent prostate cancer.  相似文献   

5.
6.
Several apoptotic regulators, including Bcl-x, are alternatively spliced to produce isoforms with opposite functions. We have used an RNA interference strategy to map the regulatory landscape controlling the expression of the Bcl-x splice variants in human cells. Depleting proteins known as core (Y14 and eIF4A3) or auxiliary (RNPS1, Acinus, and SAP18) components of the exon junction complex (EJC) improved the production of the proapoptotic Bcl-x(S) splice variant. This effect was not seen when we depleted EJC proteins that typically participate in mRNA export (UAP56, Aly/Ref, and TAP) or that associate with the EJC to enforce nonsense-mediated RNA decay (MNL51, Upf1, Upf2, and Upf3b). Core and auxiliary EJC components modulated Bcl-x splicing through different cis-acting elements, further suggesting that this activity is distinct from the established EJC function. In support of a direct role in splicing control, recombinant eIF4A3, Y14, and Magoh proteins associated preferentially with the endogenous Bcl-x pre-mRNA, interacted with a model Bcl-x pre-mRNA in early splicing complexes, and specifically shifted Bcl-x alternative splicing in nuclear extracts. Finally, the depletion of Y14, eIF4A3, RNPS1, SAP18, and Acinus also encouraged the production of other proapoptotic splice variants, suggesting that EJC-associated components are important regulators of apoptosis acting at the alternative splicing level.  相似文献   

7.
8.
Li CY  Chu JY  Yu JK  Huang XQ  Liu XJ  Shi L  Che YC  Xie JY 《Cell research》2004,14(6):473-479
The splicing of many alternative exons in the precursor messenger RNA (pre-mRNA) is regulated by extracellular factors but the underlying molecular bases remain unclear. Here we report the differential regulation of Bcl-x pre-mRNA splicing by extracellular factors and their distinct requirements for pre-mRNA elements. In K562 leukemia cells, treatment with interleukin-6 (IL-6) or granulocyte-macrophage colony stimulating factor (GM-CSF) reduced the proportion of the Bcl-xL variant mRNA while treatment with 12-O-tetradecanoylphorbol 13-acetate (TPA) had no effect. In U251 glioma cells, however, TPA efficiently increased the Bcl-xL level. These regulations were also seen for a transfected splicing reporter mini-gene. Further analyses of deletion mutants indicate that nucleotides 1-176 of the downstream intron are required for the IL-6 effect, whereas additional nucleotides 177-284 are essential for the GM-CSF effect. As for the TPA effect, only nucleotides 1-76 are required in the downstream intron. Thus, IL-6, GM-CSF and TPA differentially regulate Bcl-x splicing and require specific intronic pre-mRNA sequences for their respective effects.  相似文献   

9.
Previous studies have demonstrated that several splice variants are derived from both the caspase 9 and Bcl-x genes in which the Bcl-x splice variant, Bcl-x(L) and the caspase 9 splice variant, caspase 9b, inhibit apoptosis in contrast to the pro-apoptotic splice variants, Bcl-x(s) and caspase 9. In a recent study, we showed that ceramide induces the dephosphorylation of SR proteins, a family of protein factors that regulate alternative splicing. In this study, the regulation of the alternative processing of pre-mRNA of both caspase 9 and Bcl-x(L) was examined in response to ceramide. Treatment of A549 lung adenocarcinoma cells with cell-permeable ceramide, D-e-C(6) ceramide, down-regulated the levels of Bcl-x(L) and caspase 9b mRNA and immunoreactive protein with a concomitant increase in the mRNA and immunoreactive protein levels of Bcl-x(s) and caspase 9 in a dose- and time-dependent manner. Pretreatment with calyculin A (5 nm), an inhibitor of protein phosphatase-1 (PP1) and protein phosphatase 2A (PP2A) blocked ceramide-induced alternative splicing in contrast to okadaic acid (10 nm), a specific inhibitor of PP2A at this concentrations in cells, demonstrating a PP1-mediated mechanism. A role for endogenous ceramide in regulating the alternative splicing of caspase 9 and Bcl-x was demonstrated using the chemotherapeutic agent, gemcitabine. Treatment of A549 cells with gemcitabine (1 microm) increased ceramide levels 3-fold via the de novo sphingolipid pathway as determined by pulse labeling experiments and inhibition studies with myriocin (50 nm), a specific inhibitor of serine palmitoyltransferase (the first step in de novo synthesis of ceramide). Treatment of A549 cells with gemcitabine down-regulated the levels of Bcl-x(L) and caspase 9b mRNA with a concomitant increase in the mRNA levels of Bcl-x(s) and caspase 9. Again, inhibitors of ceramide synthesis blocked this effect. We also demonstrate that the change in the alternative splicing of caspase 9 and Bcl-x occurred prior to apoptosis following treatment with gemcitabine. Furthermore, doses of D-e-C(6) ceramide that induce the alternative splicing of both caspase 9 and Bcl-x-sensitized A549 cells to daunorubicin. These data demonstrate a role for protein phosphatases 1 (PP1) and endogenous ceramide generated via the de novo pathway in regulating this mechanism. This is the first report on the dynamic regulation of RNA splicing of members of the Bcl-2 and caspase families in response to regulators of apoptosis.  相似文献   

10.
11.
12.
Alternative 5' splice site selection allows Bcl-x to produce two isoforms with opposite effects on apoptosis. The pro-apoptotic Bcl-x(S) variant is up-regulated by ceramide and down-regulated by protein kinase C through specific cis-acting exonic elements, one of which is bound by SAP155. Splicing to the Bcl-x(S) 5' splice site is also enforced by heterogeneous nuclear ribonucleoprotein (hnRNP) F/H proteins and by Sam68 in cooperation with hnRNP A1. Here, we have characterized exon elements that influence splicing to the 5' splice site of the anti-apoptotic Bcl-x(L) isoform. Within a 86-nucleotide region (B3) located immediately upstream of the Bcl-x(L) donor site we have identified two elements (ML2 and AM2) that stimulate splicing to the Bcl-x(L) 5' splice site. SRp30c binds to these elements and can shift splicing to the 5' splice site of Bcl-x(L) in an ML2/AM2-dependent manner in vitro and in vivo. The B3 region also contains an element that represses the use of Bcl-x(L). This element is bound by U1 small nuclear ribonucleoprotein and contains two 5' splice sites that can be used when the Bcl-x(L) 5' splice site is mutated or the ML2/AM2 elements are deleted. Conversely, mutating the cryptic 5' splice sites stimulates splicing to the Bcl-x(L) site. Thus, SRp30c stimulates splicing to the downstream 5' splice site of Bcl-x(L), thereby attenuating the repressive effect of upstream U1 snRNP binding sites.  相似文献   

13.
Two splice variants derived from the BCL-x gene, proapoptotic Bcl-x(s) and anti-apoptotic Bcl-x(L), are produced via alternative 5' splice site selection within exon 2 of Bcl-x pre-mRNA. In previous studies, our laboratory demonstrated that ceramide regulated this 5' splice site selection, inducing the production of Bcl-x(s) mRNA with a concomitant decrease in Bcl-x(L) correlating with sensitization to chemotherapy (Chalfant, C. E., Rathman, K., Pinkerman, R. L., Wood, R. E., Obeid, L. M., Ogretmen, B., and Hannun, Y. A. (2002) J. Biol. Chem. 277, 12587-12595). We have now identified several possible RNA cis-elements within exon 2 of Bcl-x pre-mRNA by sequence analysis. To study the possible roles of these RNA cis-elements in regulating the alternative 5' splice site selection of Bcl-x pre-mRNA, we developed a BCL-x minigene construct which conferred the same ratio of Bcl-x(L)/Bcl-x(s) mRNA as the endogenous Bcl-x and was responsive to ceramide treatment. Mutagenesis of either a purine-rich splicing enhancer or a pyrimidine tract element within exon 2 induced a change in the ratio of Bcl-x(L)/Bcl-x(s) mRNA from 7 to 1 and 0.23, thereby diminishing the selection of the Bcl-x(L) 5' splice site with a concomitant increase in Bcl-x(s) 5' splice site selection. Furthermore, mutagenesis of these cis-elements abolished the ability of ceramide to affect the 5' splice site selection. In vitro binding assays coupled with competitor studies demonstrated specific binding of RNA trans-activating proteins to these regions. SDS-PAGE analysis of cross-linked RNA trans-activating factors with these RNA cis-elements revealed the binding of 215-, 120-, and 30-kDa proteins to the purine-rich element and 120- and 76-kDa proteins to the pyrimidine tract element. In addition, exogenous treatment of A549 cells with ceramide increased the formation of protein complexes with these RNA cis-elements. Therefore, we have identified two ceramide-responsive RNA cis-elements within exon 2 of Bcl-x pre-mRNA, and this is the first report of an RNA cis-element responsive to a bioactive lipid.  相似文献   

14.
Two splice variants derived from the Bcl-x gene via alternative 5' splice site selection (5'SS) are proapoptotic Bcl-x(s) and antiapoptotic Bcl-x(L). Previously, our laboratory showed that apoptotic signaling pathways regulated the alternative 5'SS selection via protein phosphatase-1 and de novo ceramide. In this study, we examined the elusive prosurvival signaling pathways that regulate the 5'SS selection of Bcl-x pre-mRNA in cancer cells. Taking a broad-based approach by using a number of small-molecule inhibitors of various mitogenic/survival pathways, we found that only treatment of non-small cell lung cancer (NSCLC) cell lines with the phosphoinositide 3-kinase (PI3K) inhibitor LY294002 (50 μmol/L) or the pan-protein kinase C (PKC) inhibitor G?6983 (25 μmol/L) decreased the Bcl-x(L)/(s) mRNA ratio. Pan-PKC inhibitors that did not target the atypical PKCs, PKCι and PKCζ, had no effect on the Bcl-x(L)/(s) mRNA ratio. Additional studies showed that downregulation of the proto-oncogene, PKCι, in contrast to PKCζ, also resulted in a decrease in the Bcl-x(L)/(s) mRNA ratio. Furthermore, downregulation of PKCι correlated with a dramatic decrease in the expression of SAP155, an RNA trans-acting factor that regulates the 5'SS selection of Bcl-x pre-mRNA. Inhibition of the PI3K or atypical PKC pathway induced a dramatic loss of SAP155 complex formation at ceramide-responsive RNA cis-element 1. Finally, forced expression of Bcl-x(L) "rescued" the loss of cell survival induced by PKCι siRNA. In summary, the PI3K/PKCι regulates the alternative splicing of Bcl-x pre-mRNA with implications in the cell survival of NSCLC cells.  相似文献   

15.
16.
BACKGROUND: Mutations leading to aberrant splicing are found as a cause of numerous pathologies. Splice-switching oligonucleotides (SSOs), which modify aberrant expression patterns of alternatively spliced mRNAs, are a novel means of potentially controlling such diseases. METHODS: We used an experimental model in which a mutated beta-globin intron, carrying an aberrant splice site at nucleotide 705, interrupts the coding region of the luciferase reporter gene inserted in HeLa pLuc/705 cells. We have optimized delivery of splice correcting, steric-blocking 2'-O-methyl SSOs targeting the 705 mutated region (2'-O-Me SSO(705)) with DLS (DLS: delivery liposomal system) lipoplexes. RESULTS: Optimal luciferase activity for DLS/2'-O-Me SSO(705) was achieved at 100 nM and was detectable at concentrations as low as 10 nM in serum-containing culture medium, confirming the potential of DLS lipoplex-mediated nuclear SSO delivery as observed in cellular uptake studies. We confirmed by cytofluorometry and epifluorescence microscopy the high potential of the DLS lipoplex for cellular and nuclear oligonucleotide uptake. The DLS lipoplex was then used to directly compare the intracellular efficacy of various SSO chemistries and sequences in correction of aberrant splicing. 2'-O-Methoxyethyl-oligodeoxyribonucleoside phosphorothioates had a greater activity than 2'-O-methyl phosphodiester or 2'-O-methyl-phosphorothioate oligoribonucleotides. Targeting the splicing enhancer 623 region upstream was as efficient as targeting the 705 splice site, and, remarkably, simultaneous targeting of both sites was more efficient than treatment of the cells either with 2'-O-Me SSO(705) or 2'-O-Me SSO(623) alone. CONCLUSIONS: We demonstrated that SSOs can switch on luciferase activity in HeLa cells previously transfected with the pLuc/705 plasmid via the same DLS vector and provides a novel approach to modulate the expression of a transgene.  相似文献   

17.
The effect of 2′-O-(N-methylcarbamoyl)ethyl (MCE) modification on splice-switching oligonucleotides (SSO) was systematically evaluated. The incorporation of five MCE nucleotides at the 5′-termini of SSOs effectively improved the splice switching effect. In addition, the incorporation of 2′-O-(N-methylcarbamoylethyl)-5-methyl-2-thiouridine (s2TMCE), a duplex-stabilizing nucleotide with an MCE modification, into SSOs further improved splice switching. These SSOs may be useful for the treatment of genetic diseases associated with splicing errors.  相似文献   

18.
19.
Alternative splicing often produces effectors with opposite functions in apoptosis. Splicing decisions must therefore be tightly connected to stresses, stimuli, and pathways that control cell survival and cell growth. We have shown previously that PKC signaling prevents the production of proapoptotic Bcl-x(S) to favor the accumulation of the larger antiapoptotic Bcl-x(L) splice variant in 293 cells. Here we show that the genotoxic stress induced by oxaliplatin elicits an ATM-, CHK2-, and p53-dependent splicing switch that favors the production of the proapoptotic Bcl-x(S) variant. This DNA damage-induced splicing shift requires the activity of protein-tyrosine phosphatases. Interestingly, the ATM/CHK2/p53/tyrosine phosphatases pathway activated by oxaliplatin regulates Bcl-x splicing through the same regulatory sequence element (SB1) that receives signals from the PKC pathway. Convergence of the PKC and DNA damage signaling routes may control the abundance of a key splicing repressor because SB1-mediated repression is lost when protein synthesis is impaired but is rescued by blocking proteasome-mediated protein degradation. The SB1 splicing regulatory module therefore receives antagonistic signals from the PKC and the p53-dependent DNA damage response pathways to control the balance of pro- and antiapoptotic Bcl-x splice variants.  相似文献   

20.
H K?nig  H Ponta  P Herrlich 《The EMBO journal》1998,17(10):2904-2913
Alternative splicing of pre-mRNA is a fundamental mechanism of differential gene expression in that it can give rise to functionally distinct proteins from a single gene, according to the developmental or physiological state of cells in multicellular organisms. In the pre-mRNA of the cell surface molecule CD44, the inclusion of up to 10 variant exons (v1-v10) is regulated during development, upon activation of lymphocytes and dendritic cells, and during tumour progression. Using minigene constructs containing CD44 exon v5, we have discovered exonic RNA elements that couple signal transduction to alternative splicing. They form a composite splice regulator encompassing an exon recognition element and splice silencer elements. Both type of elements are necessary to govern cell type-specific inclusion of the exon as well as inducible inclusion in T cells after stimulation by concanavalin A, by Ras signalling or after activation of protein kinase C by phorbol ester. Inducible splicing does not depend on de novo protein synthesis. The coupling of signal transduction to alternative splicing by such elements probably represents the mechanism whereby splice patterns of genes are established during development and can be changed under physiological and pathological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号