首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
2.
3.
4.
Previous studies have revealed that the cells that form the different regions of the oral and epidermal stratified squamous epithelia represent a number of intrinsically distinct keratinocyte subtypes, each of which is developmentally programmed to preferentially express a particular pattern of keratins and type of suprabasal histology. Retinoic acid (RA) is known to modulate stratified squamous epithelial differentiation, including expression of the basal cell keratin K19 and the suprabasal keratins K1/K10 and K4/K13. We have found that all keratinocyte subtypes are similar in their steady state levels of RAR alpha and RAR gamma mRNAs in culture and that these levels are only minimally affected by RA. In contrast, RAR beta mRNA expression varies greatly among keratinocyte subtypes and, in eight of ten cell strains examined, directly correlated with their levels of K19 mRNA. Exposure to 10(-6) M RA increases the levels of RAR beta and K19 mRNA; conversely, complete removal of RA from the medium results in reduced levels of these messages. RA does not coordinately induce RAR beta and K19 messages in nonkeratinocyte cell types: fibroblasts cultured in the presence of 10(-6) M RA express very high levels of RAR beta mRNA but do not express detectable K19, and mesothelial cells decrease their levels of RAR beta and K19 mRNA in response to 10(-6) M RA. The correlation between RAR beta and K19 mRNA levels in most keratinocyte subtypes suggests a role for RAR beta in specifying patterns of keratin expression and suprabasal differentiation in stratified squamous epithelia.  相似文献   

5.
6.
7.
Retinoic acid (RA) receptor alpha (RAR alpha) and RAR gamma steady-state mRNA levels remained relatively constant over time after the addition of RA to F9 teratocarcinoma stem cells. In contrast, the steady-state RAR beta mRNA level started to increase within 12 h after the addition of RA and reached a 20-fold-higher level by 48 h. This RA-associated RAR beta mRNA increase was not prevented by protein synthesis inhibitors but was prevented by the addition of cyclic AMP analogs. In the presence of RA, cyclic AMP analogs also greatly reduced the RAR alpha and RAR gamma mRNA levels, even though cyclic AMP analogs alone did not alter these mRNA levels. The addition of either RA or RA plus cyclic AMP analogs did not result in changes in the three RAR mRNA half-lives. These results suggest that agents which elevate the internal cyclic AMP concentration may also affect the cellular response to RA by altering the expression of the RARs.  相似文献   

8.
Retinoic acid (RA) is mandatory for various biological processes and normal embryonic development but is teratogenic at high concentrations. In rodents, one of the major malformations induced by RA is cleft palate (CP). RA mediates its effects by RA receptors (RARs), but the expression patterns of RARs in the developing palate are still unclear. We investigated the normal expression of RAR alpha, beta, and gamma messenger RNAs (mRNAs) in the fetal mouse secondary palate and the effects of all-trans and 13-cis RAs on the expression of RAR mRNAs by Northern blot analysis. RAR alpha (2.8, 3.8 kb), RAR beta (3.3 kb), and RAR gamma (3.7 kb) mRNAs were detected in the fetal palate on gestational days (GD) 12.5-14.5. The expression of RAR alpha and gamma mRNAs did not show apparent sequential changes, but that of RAR beta mRNA increased at GD 13.5. Treatment of pregnant mice with 100 mg/kg all-trans RA induced CP in 94% of the fetuses and elevated the levels of RAR beta and gamma mRNAs in the fetal palate. The up-regulation of RAR beta mRNA by all-trans RA was more marked than that of RAR gamma mRNA. Treatment with 100 mg/kg 13-cis RA induced CP in only 19% of the fetuses. Although 13-cis RA elevated the RAR beta and gamma mRNA levels in fetal palates, its up-regulation was slower and less marked than that induced by all-trans RA. These findings indicate that the induction of RAR beta mRNA in the fetal palate correlates well with the tissue concentration of all-trans RA after RA treatment, and RAR beta may be one of the most influential candidate molecules for RA-induced teratogenesis.  相似文献   

9.
Retinoids are known to inhibit the growth of hormone-dependent but not that of hormone-independent breast cancer cells. We investigated the involvement of retinoic acid (RA) receptors (RARs) in the differential growth-inhibitory effects of retinoids and the underlying mechanism. Our data demonstrate that induction of RAR beta by RA correlates with the growth-inhibitory effect of retinoids. The hormone-independent cells acquired RA sensitivity when the RAR beta expression vector was introduced and expressed in the cells. In addition, RA sensitivity of hormone-dependent cells was inhibited by a RAR beta-selective antagonist and the expression of RAR beta antisense RNA. Introduction of RAR alpha also restored RA sensitivity in hormone-independent cells, but this restoration was accomplished by the induction of endogenous RAR beta expression. Furthermore, we show that induction of apoptosis contributes to the growth-inhibitory effect of RAR beta. Thus, RAR beta can mediate retinoid action in breast cancer cells by promoting apoptosis. Loss of RAR beta, therefore, may contribute to the tumorigenicity of human mammary epithelial cells.  相似文献   

10.
11.
12.
13.
14.
Previous studies have demonstrated the ability of retinoic acid (RA) to inhibit the growth of two spontaneous murine melanoma cell lines (B16-F1 and S91-C2) and to augment both sialyltransferase activity and the sialylation of an Mr 160,000 cell-surface glycoprotein. The present study examined the effects of RA on an ultraviolet irradiation-induced murine melanoma cell line K-1735P. Like the two spontaneous melanomas, the uv-induced melanoma exhibited susceptibility to the growth-inhibitory action of RA. Both the anchorage-dependent and the anchorage-independent growths of the K-1735P cells were suppressed by RA, with IC50 values of 5 X 10(-9) and 3 X 10(-12) M, respectively. Sialyltransferase activity in both S91-C2 and K-1735P cells treated with 10(-6) or 10(-5) M RA increased two- and three-fold, respectively, as compared with untreated cells. In contrast, cell-surface sialo- and galactoglycoproteins, revealed by labeling with periodate and tritiated borohydrate or with neuraminidase, galactose oxidase, and tritiated borohydrate, respectively, varied between the S91-C2 and the K-1735P cells, and each cell line's modulation by RA was also distinct. These findings suggest that although RA can increase the activity of sialyltransferase in different melanoma cells, this increased activity may, in turn, result in an increased sialylation of distinct cell-surface glycoproteins.  相似文献   

15.
16.
Differentiation of P19 EC cells along different pathways into derivatives resembling cells of the three embryonic germ layers is accompanied by characteristic differences in modulation of expression of each of the three retinoic acid receptor genes, RAR alpha, -beta and -gamma. Differentiation induced by addition of RA to P19 EC cells cultured in monolayer is accompanied by a rapid increase in expression of both RAR alpha and -beta. Induction of RAR beta occurs in a characteristic biphasic manner, suggesting that multiple factors and/or different mechanisms are involved in controlling its expression. RAR beta mRNA is induced to a far higher level during early aggregation in the presence of RA than during early differentiation in monolayer, suggesting that the direction of differentiation depends on the number and/or ratio of alpha and beta type of RA receptors. Aggregation of P19 EC cells in the presence of RA, but not DMSO, is accompanied by repression of RAR gamma, suggesting that the expression of RAR beta and RAR gamma during neuroectodermal differentiation is mutually exclusive. The effects of RA on RAR expression are significantly greater in G1 than in S-phase of the cell cycle. These results extend previous observations that commitment to differentiation is cell cycle dependent and indicates that critical target gene regulation in response to RA has to take place in G1 for differentiation to occur.  相似文献   

17.
18.
19.
Retinoic acid (RA), which reduces the rate of cell proliferation in S91 mouse melanoma clone C2 cells, was found to stimulate the expression of their melanotic phenotype. RA treatment also induced the extension of long cellular processes. The RA effects on melanogenesis included stimulation of tyrosinase activity and augmentation of cellular melanin content to levels 3- to 4-fold higher than in untreated cultures at similar cell densities. These effects became apparent after 48 hours of exposure to 10(-5) M RA and increased thereafter. Half-maximal stimulation in cells treated for 6 days occurred at 5 X 10(-7) M RA. Although the degrees of melanogenesis enhancement by RA (10(-5) M) and by alpha-melanocyte stimulatory hormone (2 X 10(-7) M) were similar, the former did not alter the intracellular cAMP level, whereas the latter induced a transient 4-fold increase. In high-passage (p28) cells, as well as in low-passage cells (less than p10) treated with tyrosinase inhibitor phenylthiocarbamate, melanin synthesis was suppressed in the absence and presence of RA, yet the ability of RA to inhibit cell proliferation was not compromised. In the presence of the tumor promotor phorbol myristate acetate (greater than 5 X 10(-9) M) melanin synthesis in control as well as in cells exposed to RA was dramatically inhibited. Phorbol which is not active in tumor promotion had no effect on melanogenesis. In addition to RA, other retinoids, such as 13-cis-retinoic acid, retinyl acetate, the TMMP analog of RA and the phenyl analog of RA, but not the pyridyl analog of RA or retinyl palmitate, also inhibited cell growth and enhanced melanin synthesis.  相似文献   

20.
We have previously shown that retinoic acid (RA) is able to act on the development of Leydig, Sertoli, and germ cells in the testis in culture (Livera et al., Biol Reprod 2000; 62:1303-1314). To identify which receptors mediate these effects, we have now added selective agonists and antagonists of retinoic acid receptors (RARs) or retinoid X receptors (RXRs) in the same organotypic culture system. The RAR alpha agonist mimicked most of the effects of RA on the cultured fetal or neonatal testis, whereas the RAR beta, gamma, and pan RXR agonists did not. The RAR alpha agonist decreased the testosterone production, the number of gonocytes, and the cAMP response to FSH of fetal testis explanted at 14.5 days postconception (dpc). The RAR alpha agonist disorganized the cords of the 14.5-dpc cultured testis and increased the cord diameter in cultured 3-days-postpartum (dpp) testis in the same way as RA. All these RA effects could be reversed by an RAR alpha antagonist and were unchanged by an RAR beta/gamma antagonist. The RAR beta agonist, however, increased Sertoli cell proliferation in the 3-dpp testis in the same way as RA, and this effect was blocked by an RAR beta antagonist. The RAR gamma and the pan RXR agonists had no selective effect. These results suggest that all the effects of RA on development of the fetal and neonatal testis are mediated via RAR alpha, except for its effect on Sertoli cell proliferation, which involves RAR beta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号