首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An NAD-dependent glycerol-3-phosphate dehydrogenase (sn-glycerol-3-phosphate: NAD+ oxidoreductase, EC 1.1.1.8) has been isolated and purified from Saccharomyces cerevisiae by affinity and exclusion chromatography. The enzyme was purified 5100-fold to a specific activity of 158. It has a molecular weight of approximately 31,000, a pH optimum between 6.8 and 7.2, and is sensitive to high-ionic-strength salt solutions. The enzyme is most strongly inhibited by phosphate and chloride ions.  相似文献   

2.
3.
It is shown that F1-ATPase preparations having impaired catalytic rates may be purified from partial revertants of uncA mutant strains of Escherichia coli. Recovery of catalytic activity in the partial revertant F1 was accompanied by recovery of alpha in equilibrium beta intersubunit conformational interaction, supporting the hypothesis that such interaction is required for normal catalysis in F1. The specific ATPase activities of the partial revertant F1 preparations were in the range 1-29% of normal, and some of the preparations showed unusual insensitivity to inhibitors. The properties of a new uncA mutant F1 preparation (uncA498) which has approximately half of normal catalytic rate are also briefly described.  相似文献   

4.
The activity of NAD-linked alpha-glycerol-3-phosphate dehydrogenase (NAD-G3PDH; EC 1.1.1.8) was depressed by 35% when the thyroid hormone 3,3',5-triiodo-L-thyronine (20 micrograms/liter) was added to the serum-free, hormonally supplemented medium of cultured neonatal rat heart cells. The degree of depression was greater (65%) when the medium contained normal serum levels of hydrocortisone and insulin. There is a dramatic inverse dose-response relationship between triiodothyronine levels and NAD-G3PDH activity. The classic elevation by thyroid hormones of the FAD-linked alpha-glycerol-3-phosphate dehydrogenase (FAD-G3PD; EC 1.1.99.5) was observed concurrently. The medium-glucose depletion rate in triiodothyronine-free cells was depressed 32% through 11 days-in-culture, indicating reduced glycolytic activity. The activities of nine other metabolically important enzymes which were measured during this study, including hexokinase, glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, phosphofructokinase, pyruvate kinase, malate dehydrogenase, NAD-isocitrate dehydrogenase, NADH cytochrome c reductase, and succinic cytochrome c reductase, did not respond to varying triiodothyronine concentrations.  相似文献   

5.
Glyceraldehyde-3-phosphate dehydrogenase (GAPD) was isolated from human erythrocyte ghosts by a simple procedure utilizing ammonium sulfate precipitation and affinity chromatography on NAD+-Sepharose 4B. The purified enzyme had a specific activity of 98 units/mg protein. The kinetic mechanism of GAPD was studied by product and deadend inhibition using NADH, α-glycerophosphate, nitrate, and 2,3-diphosphoglycerate. The results indicated that the human erythrocyte GAPD-catalyzed reaction follows an ordered ter bi mechanism characterized by the sequential addition of NAD+, glyceraldehyde 3-phosphate (GAP), and phosphate to the enzyme and the sequential release of 1,3-diphosphoglycerate and NADH from the enzyme. This contrasts with the mechanism (rapid equilibrium random ter bi) proposed by Oguchi (1970, J. Biochem. (Tokyo)68, 427–439) who based his conclusion on the initial rate data alone. Since the Michaelis-Menten kinetics were not applicable to this enzyme because of the competitive substrate inhibition by GAP, we devised a new kinetic approach for determining the parameters of the GAPD-catalyzed reaction. Results of this study indicate that the GAPD-catalyzed reaction is regulated by both ATP and GAP. We propose that GAP acts as an “amplifier” for the feedback inhibition effect of ATP. We discuss the effect this may have played in causing controversy over the regulatory role of this enzyme in glycolysis.  相似文献   

6.
Hybridization of glyceraldehyde-3-phosphate dehydrogenase   总被引:2,自引:0,他引:2  
  相似文献   

7.
Three sequence-specific endonucleases from Escherichia coli RFL47   总被引:4,自引:0,他引:4  
The characterization of the new restriction enzyme Eco47III recognizing a hexanucleotide palindromic sequence 5'AGC decreases GCT and cleaving, as indicated by the arrow, is reported. It was isolated from Escherichia coli strain RFL47. Another two specific endonuclease Eco47I (isoschizomer of AvaII) and Eco47II (isoschizomer of AsuI) were also found in this strain. There are two Eco47III recognition sites on lambda DNA at 20997 and 37060 basepairs. The central Eco47III fragment can be replaced by a cloned fragment in lambda vector mutant in tR2 gene; i.e., lambda gt.  相似文献   

8.
9.
An investigation of the subunit structure of glutamyl-tRNA synthetase (EC 6.1.1.17) from Escherichia coli indicates that this enzyme is a monomer. The enzyme purified to apparent homogeneity is a single polypeptide chain with a molecular weight of 62,000 ± 3,000 and KGlum ? 50 μM in the aminoacylation reaction. Analytical gel electrophoretic procedures were used to determine the molecular weight of species exhibiting glutamyl-tRNA synthetase activity in freshly prepared extracts of several strains of E. coli, which had been grown under various nutritional conditions and harvested at different stages of growth. In all cases, glutamyl-tRNA synthetase activity was associated with a protein having about the same molecular weight and KGlum as the purified enzyme. Thus, no evidence of an oligomeric form of glutamyl-tRNA synthetase with a greater affinity for l-glutamate was obtained, in contrast to a previous report of J. Lapointe and D. Söll (J. Biol. Chem.247, 4966–4974, 1972).  相似文献   

10.
On the control of septation in Escherichia coli.   总被引:1,自引:0,他引:1  
Mutants of E. coli defective in cell septation (ftsA to ftsG, conditional thermosensitive mutants isolated by Ricard and Hirota) were studied with respect to their membrane protein composition, murein hydrolase activities and rates of synthesis of murein and phospholipids. Three classes of mutants have been distinguished: 1) those affected in both murein and phospholipid synthesis; 2) those affected in either murein or phospholipid synthesis and 3) those affected in neither of these parameters. Overall murein hydrolase activities, after activation, is of the same order in all the mutants screened. In addition to soluble products of murein splitting, we have found insoluble products that appear to be in dynamic equilibrium with the murein of the sacculus. Endogenous levels of cyclic adenosine 3',5'-monophosphate measured after blocking septation showed no variation. This suggests that the cyclic nucleotide is not involved in the metabolic control of septation.  相似文献   

11.
A rapid and convenient procedure for isolating human glyceraldehyde-3-phosphate dehydrogenase from erythrocytes has been developed and yields enzyme with a specific activity of 33–52. The physical and catalytic properties of the enzyme are similar to those of rabbit muscle enzyme. Reassociation of freshly isolated human glyceraldehyde-3-phosphate dehydrogenase with washed erythrocyte membranes increases the specific activity and stability of the enzyme suggesting that enzyme-membrane interactions may have an important effect on the conformation and catalytic activity. That the human enzyme behaves as a dimer of dimers, similar to the behavior or rabbit muscle glyceraldehyde-3-phosphate dehydrogenase, is suggested by its half-of-the-sites reactivity toward 4-iodoacetamido-1-naphthol. The human enzyme binds nicotinamide hypoxanthine dinucleotide, a structural analog of NAD+, with negative cooperativity, further indicating its similarity to rabbit muscle enzyme.  相似文献   

12.
The uptake of glucose by the glucose phosphotransferase system in Escherichia coli was inhibited greater than 90% by ascorbate. The uptake of the nonmetabolizable analog of glucose, methyl-alpha-glucoside, was also inhibited to the same extent, confirming that it was the transport process that was sensitive to ascorbate. Similarly, it was the transport function of mannose phosphotransferase for which mannose and nonmetabolizable 2-deoxyglucose were substrates that was partially inhibited by ascorbate. Other phosphotransferase systems, including those for the uptake of sorbitol, fructose and N-acetylglucosamine, but not mannitol, were also inhibited to varying degrees by ascorbate. The inhibitory effect on the phosphotransferase systems was reversible, required the active oxidation of ascorbate, was sensitive to the presence of free-radical scavengers, and was insensitive to uncouplers. Because ascorbate was not taken up by E. coli, it was concluded that the active inhibitory species was the ascorbate free radical and that it was interacting reversibly with a membrane component, possibly the different enzyme IIB components of the phosphotransferase systems. Ascorbate also inhibited other transport systems causing a slight reduction in the passive diffusion of glycerol, a 50% inhibition of the shock-sensitive uptake of maltose, and a complete inhibition of the proton-symport uptake of lactose. Radical scavengers had little or no effect on the inhibition of these systems.  相似文献   

13.
GTP cyclohydrolase I of Escherichia coli converts [beta,gamma-methylene] GTP to a fluorescent product that is characterized as [beta,gamma-methylene]dihydroneopterin triphosphate. Interaction between the GTP analog and the enzyme gave a Ki of 3.0 microM, which may be compared to the Km of 0.1 microM for GTP. This new analog of dihydroneopterin triphosphate may, in turn, be converted to the same greenish-yellow pteridines (compounds X, X1, and X2) that are obtained from dihydroneopterin triphosphate. Because of its stability to phosphatase action, this analog may be useful for studies in pteridine metabolism.  相似文献   

14.
The acyl-acyl carrier protein synthetase from Escherichia coli has been examined for its ability to specifically acylate acyl carrier protein (ACP) from higher plants in order to develop an assay for plant ACP, and to prepare labeled acyl-ACP of plant origin. It was found that the E. coli enzyme was able to acylate ACP from spinach, soybean, avocado, corn, and several other plants. The acylation was very specific because, in crude extracts of spinach leaves where ACP represented approximately 0.1% of the total soluble protein, ACP was shown to be the only protein acylated. In contrast to other E. coli enzymes that display 2- to 10-fold lower rates with plant versus bacterial ACP, the kinetic constants (Km and Vmax) for acyl-ACP synthetase were found to be essentially identical for spinach and E. coli ACP when acylated with palmitic acid. Palmitic, myristic, lauric, stearic, and oleic acid could all be esterified to both spinach and E. coli ACP with similar specificity. Procedures are described that allow the assay of ACP in plant extracts at the nanogram level.  相似文献   

15.
The 3′ end of 16 S RNA is localized on the 30 S subunit of Escherichia coli ribosomes by immune electron microscopy. It is located in the groove between the side “ledge” and the “head” of the subunit on the level of the ledge top. Thus, we have localized the 30 S subunit functional site which is believed to be responsible for binding of the specific messenger RNA sequence preceding the initiation codon. The localization of the 3′ end of 16 S RNA has been done by a new approach in immune electron microscopy. It is based on the covalent binding of low molecular weight ligands, containing the residue of phenyl-β-d-lactoside hapten, to certain points of RNA and the localization of the binding site of the antibody specific to this hapten by electron microscopy. The advantages of this approach in comparison with conventional methods of immune electron microscopy are discussed.  相似文献   

16.
Precise frameshift and nonsense mutations were introduced into the region preceding the galactokinase gene (galK) of Escherichia coli. These mutations after the position at which upstream translation terminates relative to the galK translation initiation signal. Constructions were characterized that allow ribosomes to stop selectively before, within or downstream from the galK initiation signal. The effects of these mutations on galK expression were monitored. Galactokinase levels are highest when upstream translation terminates within the galK initiation region. In contrast, when translation stops either upstream or down stream from the galK start site, galK expression is drastically reduced. These results demonstrate that the galK gene is translationally coupled to the gene immediately preceding galK in the gal operon (that is, galT), and that the coupling effect depends primarily on the position at which upstream translation terminates relative to the galK start site. Possible mechanisms and implications of this translational coupling phenomenon are discussed.  相似文献   

17.
Ribonuclease digestion of 50 S-derived LiCl cores led to 22 ribonucleoprotein particles which were isolated by repeated sucrose gradient centrifugations. The protein content was determined and ranged from 2 to 28 proteins. Most of the fragments showed a unique RNA pattern as judged by acrylamide gel electrophoresis.Functional tests were performed with selected fragments. No fragment was active in the poly(U) or the peptidyl-transferase assay. Chloramphenicol binding studies revealed that in addition to the dominant role of protein L16, the protein L11 (or L6) is involved directly in the drug binding. Finally, tests for ATPase and GTPase activity showed that protein L18 is involved in GTPase activity.  相似文献   

18.
Homogeneous ? bound tightly to the purified Escherichia coli ATPase (ECF1 from which ? had been removed and strongly inhibited its ATPase activity. ECF1 containing ? had a lower specific activity than ECF1 missing ?, provided that the ATPase assay was carried out at relatively high concentrations of enzyme. Antiserum specific for the ? subunit stimulated the ATPase, as did diluting the enzyme, apparently by dissociating ?. When the ATPase reaction was started by the addition of enzyme, the rate of ATP hydrolysis increased progressively during the first 3 min until a linear steady-state rate was reached. A prior incubation with ATP abolished the lag period and ADP prevented the ATP effect. ECF1 missing ? gave a linear rate of ATP hydrolysis without a lag, unless ? was rebound to it before the assay. These results suggest that ECF1 as purified is in an inhibited state due to the presence of the ? subunit, whose interaction with ECF1 is governed by an equilibrium binding. ATP appears to convert ECF1 to a form which more readily binds and releases ?.  相似文献   

19.
Adenylosuccinate synthase (EC 6.3.4.4.) (l-aspartate + GTP + IMPMg2+adenylosuccinate + GDP + Pi) is an important site for the regulation of adenylate biosynthesis. A partially purified preparation of the enzyme from Escherichia coli B showed feedback inhibition by ADP and AMP, weak positive response to the adenylate energy charge, and weak positive response to the mole fraction of GTP in the GTP + GDP pool. These responses seem to ensure that the synthesis of adenine nucleotides will be controlled appropriately in response to the level of end products and to the energy state of the cell, and to avoid the potential difficulties arising from the fact that the end products of this sequence and the indicators of the energy state of the cell are the same compounds.  相似文献   

20.
F1ATPase from the Escherichia coli mutant of H+-ATPase, AN120 (uncA401), has less than 1% of the wild type activity and has been shown to be defective in the alpha subunit by in vitro reconstitution experiments. In the present study, the mutation site was located within a domain of the subunit by recombinant DNA technology. For this, a series of recombinant plasmids carrying various portions of the alpha subunit gene were constructed and used for genetic recombination with AN120. Analysis of the recombinants indicated that the mutation site could be located between amino acid residues 370 and 387. The biochemical properties of the mutant F1 were analyzed further using the fluorescent ATP analog DNS-ATP (2'-(5-dimethylaminonaphthalene-1-sulfonyl)-amino-2'-deoxy ATP). The single turnover process of E. coli F1ATPase proposed by Matsuoka et al. [(1982) J. Biochem. 92, 1383-1398.] was compared in the mutant and wild type F1's. Mutant F1 bound DNS-ATP and hydrolyzed it as efficiently as wild type F1. Results showed that binding of ATP to a low affinity site, possibly in the beta subunit, caused decrease of fluorescence of DNS-ATP in the wild type F1 and that this effect of ATP binding was inhibited by DCCD (dicyclohexyl carbodiimide). However, this effect was not inhibited by DCCD in the mutant F1, suggesting that in the proposed process some step(s) after ATP binding to the low affinity site differed in the mutant and wild F1's. When Pi was added to F1 bound to DNS-ATP or to aurovertin, a fluorescent probe capable of binding to the beta subunit, the opposite changes of fluorescence of these probes in the mutant and wild type F1's were observed, suggesting that the conformational change induced by phosphate binding was altered in the mutant F1. On the basis of the estimated mutation site and the biochemical properties of the mutant F1, the correlation of the domain of this site in the alpha subunit with the function of F1 ATPase is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号