首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Crystallographic structures of the mitochondrial ubiquinol/cytochrome c oxidoreductase (cytochrome bc(1) complex) suggest that the mechanism of quinol oxidation by the bc(1) complex involves a substantial movement of the soluble head of the Rieske iron-sulfur protein (ISP) between reaction domains in cytochrome b and cytochrome c(1) subunits. In this paper we report the results of steered molecular dynamics simulations inducing, through an applied torque within 1 ns, a 56 degrees rotation of the soluble domain of ISP. For this purpose, a solvated structure of the bc(1) complex in a phospholipid bilayer (a total of 206,720 atoms) was constructed. A subset of 91,061 atoms was actually simulated with 45,131 moving atoms. Point charge distributions for the force field parametrization of heme groups and the Fe(2)S(2) cluster of the Rieske protein included in the simulated complex were determined. The simulations showed that rotation of the soluble domain of ISP is actually feasible. Several metastable conformations of the ISP during its rotation were identified and the interactions stabilizing the initial, final, and intermediate positions of the soluble head of the ISP domain were characterized. A pathway for proton conduction from the Q(o) site to the solvent via a water channel has been identified.  相似文献   

2.
Acidianus ambivalens is a hyperthermoacidophilic archaeon which grows optimally at approximately 80 degrees C and pH 2.5. The terminal oxidase of its respiratory system is a membrane-bound quinol oxidase (cytochrome aa(3)) which belongs to the heme-copper oxidase superfamily. One difference between this quinol oxidase and a majority of the other members of this family is that it lacks the highly-conserved glutamate (Glu(I-286), E. coli ubiquinol oxidase numbering) which has been shown to play a central role in controlling the proton transfer during reaction of reduced oxidases with oxygen. In this study we have investigated the dynamics of the reaction of the reduced A. ambivalens quinol oxidase with O(2). With the purified enzyme, two kinetic phases were observed with rate constants of 1.8&z.ccirf;10(4) s(-1) (at 1 mM O(2), pH 7.8) and 3. 7x10(3) s(-1), respectively. The first phase is attributed to binding of O(2) to heme a(3) and oxidation of both hemes forming the 'peroxy' intermediate. The second phase was associated with proton uptake from solution and it is attributed to formation of the 'oxo-ferryl' state, the final state in the absence of quinol. In the presence of bound caldariella quinol (QH(2)), heme a was re-reduced by QH(2) with a rate of 670 s(-1), followed by transfer of the fourth electron to the binuclear center with a rate of 50 s(-1). Thus, the results indicate that the quinol donates electrons to heme a, followed by intramolecular transfer to the binuclear center. Moreover, the overall electron and proton-transfer kinetics in the A. ambivalens quinol oxidase are the same as those in the E. coli ubiquinol oxidase, which indicates that in the A. ambivalens enzyme a different pathway is used for proton transfer to the binuclear center and/or other protonatable groups in an equivalent pathway are involved. Potential candidates in that pathway are two glutamates at positions (I-80) and (I-83) in the A. ambivalens enzyme (corresponding to Met(I-116) and Val(I-119), respectively, in E. coli cytochrome bo(3)).  相似文献   

3.
The cytochrome bc(1) complex catalyzes electron transfer from ubiquinol to cytochrome c by a protonmotive Q cycle mechanism in which electron transfer is linked to proton translocation across the inner mitochondrial membrane. In the Q cycle mechanism proton translocation is the net result of topographically segregated reduction of quinone and reoxidation of quinol on opposite sides of the membrane, with protons being carried across the membrane as hydrogens on the quinol. The linkage of proton chemistry to electron transfer during quinol oxidation and quinone reduction requires pathways for moving protons to and from the aqueous phase and the hydrophobic environment in which the quinol and quinone redox reactions occur. Crystal structures of the mitochondrial cytochrome bc(1) complexes in various conformations allow insight into possible proton conduction pathways. In this review we discuss pathways for proton conduction linked to ubiquinone redox reactions with particular reference to recently determined structures of the yeast bc(1) complex.  相似文献   

4.
The dimeric cytochrome bc(1) complex catalyzes the oxidation-reduction of quinol and quinone at sites located in opposite sides of the membrane in which it resides. We review the kinetics of electron transfer and inhibitor binding that reveal functional interactions between the quinol oxidation site at center P and quinone reduction site at center N in opposite monomers in conjunction with electron equilibration between the cytochrome b subunits of the dimer. A model for the mechanism of the bc(1) complex has emerged from these studies in which binding of ligands that mimic semiquinone at center N regulates half-of-the-sites reactivity at center P and binding of ligands that mimic catalytically competent binding of ubiquinol at center P regulates half-of-the-sites reactivity at center N. An additional feature of this model is that inhibition of quinol oxidation at the quinone reduction site is avoided by allowing catalysis in only one monomer at a time, which maximizes the number of redox acceptor centers available in cytochrome b for electrons coming from quinol oxidation reactions at center P and minimizes the leakage of electrons that would result in the generation of damaging oxygen radicals.  相似文献   

5.
Energy transduction in the cytochrome bc(1) complex is achieved by catalyzing opposite oxido-reduction reactions at two different quinone binding sites. We have determined the pre-steady state kinetics of cytochrome b and c(1) reduction at varying quinol/quinone ratios in the isolated yeast bc(1) complex to investigate the mechanisms that minimize inhibition of quinol oxidation at center P by reduction of the b(H) heme through center N. The faster rate of initial cytochrome b reduction as well as its lower sensitivity to quinone concentrations with respect to cytochrome c(1) reduction indicated that the b(H) hemes equilibrated with the quinone pool through center N before significant catalysis at center P occurred. The extent of this initial cytochrome b reduction corresponded to a level of b(H) heme reduction of 33%-55% depending on the quinol/quinone ratio. The extent of initial cytochrome c(1) reduction remained constant as long as the fast electron equilibration through center N reduced no more than 50% of the b(H) hemes. Using kinetic modeling, the resilience of center P catalysis to inhibition caused by partial pre-reduction of the b(H) hemes was explained using kinetics in terms of the dimeric structure of the bc(1) complex which allows electrons to equilibrate between monomers.  相似文献   

6.
Zhou F  Yin Y  Su T  Yu L  Yu CA 《Biochimica et biophysica acta》2012,1817(12):2103-2109
The effect of molecular oxygen on the electron transfer activity of the cytochrome bc(1) complex was investigated by determining the activity of the complex under the aerobic and anaerobic conditions. Molecular oxygen increases the activity of Rhodobacter sphaeroides bc(1) complex up to 82%, depending on the intactness of the complex. Since oxygen enhances the reduction rate of heme b(L), but shows no effect on the reduction rate of heme b(H), the effect of oxygen in the electron transfer sequence of the cytochrome bc(1) complex is at the step of heme b(L) reduction during bifurcated oxidation of ubiquinol.  相似文献   

7.
The steady-state kinetics of ubiquinol: cytochrome c reductase (cytochrome bc1 complex) is analyzed in this work. The graphical pattern of the titrations is clearly indicative of a ping-pong mechanism, but the two products ubiquinone and reduced cytochrome c behave competitively with their substrate and noncompetitively with the other substrate. Hence, the mechanism of the reductase is of a ping-pong two-site type. A minimal reaction scheme for the enzymatic mechanism is proposed and approximate values of its rate constants are deduced on the assumption that each substrate is in rapid equilibrium at its catalytic site. This has been substantiated by presteady-state measurements of the reduction and oxidation of cytochrome b by a short-chain homolog of ubiquinol. Values of the rate constants of the reaction scheme have been deduced from the steady-state titrations for a series of 2,3-dimethoxy-5-methyl quinols having different hydrophobic substituents in position 6 of the ring. The results provide a quantitative estimation of the specificity of the quinol catalytic site in the transmembrane portion of the bc1 complex. In particular, a reasonable correlation is found between the rate of the second-order reaction of quinols with the enzyme and their solubility in lipids.  相似文献   

8.
Bifurcated electron flow to high potential "Rieske" iron-sulfur cluster and low potential heme b(L) is crucial for respiratory energy conservation by the cytochrome bc(1) complex. The chemistry of ubiquinol oxidation has to ensure the thermodynamically unfavorable electron transfer to heme b(L). To resolve a central controversy about the number of ubiquinol molecules involved in this reaction, we used high resolution magic-angle-spinning nuclear magnetic resonance experiments to show that two out of three n-decyl-ubiquinones bind at the ubiquinol oxidation center of the complex. This substantiates a proposed mechanism in which a charge transfer between a ubiquinol/ubiquinone pair explains the bifurcation of electron flow.  相似文献   

9.
The cytochrome bc(1) complex is a dimeric enzyme that links electron transfer from ubiquinol to cytochrome c by a protonmotive Q cycle mechanism in which ubiquinol is oxidized at one center in the enzyme, referred to as center P, and ubiquinone is re-reduced at a second center, referred to as center N. To understand better the mechanism of ubiquinol oxidation, we have examined the interaction of several inhibitory analogs of ubiquinol with the yeast cytochrome bc(1) complex. Stigmatellin and methoxyacrylate stilbene, two inhibitors that block ubiquinol oxidation at center P, inhibit the yeast enzyme with a stoichiometry of 0.5 per bc(1) complex, indicating that one molecule of inhibitor is sufficient to fully inhibit the dimeric enzyme. This stoichiometry was obtained when the inhibitors were titrated in cytochrome c reductase assays and in reactions of quinol with enzyme in which the inhibitors block pre-steady state reduction of cytochrome b. As an independent measure of inhibitor binding, we titrated the red shift in the optical spectrum of ferrocytochrome b with methoxyacrylate stilbene and thus confirmed the results of the inhibition of activity titrations. The titration curves also indicate that the binding is anti-cooperative, in that a second molecule of inhibitor binds with much lower affinity to a dimer in which an inhibitor molecule is already bound. Because these inhibitors bind to the ubiquinol oxidation site in the bc(1) complex, we propose that the yeast cytochrome bc(1) complex oxidizes ubiquinol by an alternating, half-of-the-sites mechanism.  相似文献   

10.
Reduction of cytochrome b-560 (analogous to cyt b-562 of mitochondria) via an antimycin-sensitive route has been revealed in chromatophores of the photosynthetic bacterium, Rhodopseudomonas sphaeroides Ga. Indeed, the results suggest that two reductive mechanisms can be operative. One is consistent with the idea that the quinol generated at the reaction center QB site enters the Q pool and, via the Qc site, equilibrates with cytochrome b-560. The other reductive mode circumvents redox equilibrium with the pool; we consider that this could result from a direct encounter of the reaction center with the bc1 complex perhaps involving a direct QB-Qc site interaction. This latter reaction is suppressed by occupancy of the Qc site, not only by antimycin but by ubiquinol and ubiquinone.  相似文献   

11.
An enzyme complex with ubiquinol-cytochrome c oxidoreductase, cytochrome c oxidase, and ubiquinol oxidase activities was purified from a detergent extract of the plasma membrane of aerobically grown Paracoccus denitrificans. This ubiquinol oxidase consists of seven polypeptides and contains two b cytochromes, cytochrome c1, cytochrome aa3, and a previously unreported c-type cytochrome. This c-type cytochrome has an apparent Mr of 22,000 and an alpha absorption maximum at 552 nm. Retention of this c cytochrome through purification presumably accounts for the independence of ubiquinol oxidase activity on added cytochrome c. Ubiquinol oxidase can be separated into a 3-subunit bc1 complex, a 3-subunit c-aa3 complex, and a 57-kDa polypeptide. This, together with detection of covalently bound heme and published molecular weights of cytochrome c1 and the subunits of cytochrome c oxidase, allows tentative identification of most of the subunits of ubiquinol oxidase with the prosthetic groups present. Ubiquinol oxidase contains cytochromes corresponding to those of the mitochondrial bc1 complex, cytochrome c oxidase complex, and a bound cytochrome c. Ubiquinol-cytochrome c oxidoreductase activity of the complex is inhibited by inhibitors of the mitochondrial bc1 complex. Thus it seems likely that the pathway of electron transfer through the bc1 complex of ubiquinol oxidase is similar to that through the mitochondrial bc1 complex. The number of polypeptides present is less than half the number in the corresponding mitochondrial complexes. This structural simplicity may make ubiquinol oxidase from P. denitrificans a useful system with which to study the mechanisms of electron transfer and energy transduction in the bc1 and cytochrome c oxidase sections of the respiratory chain.  相似文献   

12.
The interaction domain for cytochrome c on the cytochrome bc(1) complex was studied using a series of Rhodobacter sphaeroides cytochrome bc(1) mutants in which acidic residues on the surface of cytochrome c(1) were substituted with neutral or basic residues. Intracomplex electron transfer was studied using a cytochrome c derivative labeled with ruthenium trisbipyridine at lysine 72 (Ru-72-Cc). Flash photolysis of a 1:1 complex between Ru-72-Cc and cytochrome bc(1) at low ionic strength resulted in electron transfer from photoreduced heme c to cytochrome c(1) with a rate constant of k(et) = 6 x 10(4) s(-1). Compared with the wild-type enzyme, the mutants substituted at Glu-74, Glu-101, Asp-102, Glu-104, Asp-109, Glu-162, Glu-163, and Glu-168 have significantly lower k(et) values as well as significantly higher equilibrium dissociation constants and steady-state K(m) values. Mutations at acidic residues 56, 79, 82, 83, 97, 98, 213, 214, 217, 220, and 223 have no significant effect on either rapid kinetics or steady-state kinetics. These studies indicate that acidic residues on opposite sides of the heme crevice of cytochrome c(1) are involved in binding positively charged cytochrome c. These acidic residues on the intramembrane surface of cytochrome c(1) direct the diffusion and binding of cytochrome c from the intramembrane space.  相似文献   

13.
We have obtained evidence for conformational communication between ubiquinol oxidation (center P) and ubiquinone reduction (center N) sites of the yeast bc1 complex dimer by analyzing antimycin binding and heme bH reduction at center N in the presence of different center P inhibitors. When stigmatellin was occupying center P, concentration-dependent binding of antimycin occurred only to half of the center N sites. The remaining half of the bc1 complex bound antimycin with a slower rate that was independent of inhibitor concentration, indicating that a slow conformational change needed to occur before half of the enzyme could bind antimycin. In contrast, under conditions where the Rieske protein was not fixed proximal to heme bL at center P, all center N sites bound antimycin with fast and concentration-dependent kinetics. Additionally, the extent of fast cytochrome b reduction by menaquinol through center N in the presence of stigmatellin was approximately half of that observed when myxothiazol was bound at center P. The reduction kinetics of the bH heme by decylubiquinol in the presence of stigmatellin or myxothiazol were also consistent with a model in which fixation of the Rieske protein close to heme bL in both monomers allows rapid binding of ligands only to one center N. Decylubiquinol at high concentrations was able to abolish the biphasic binding of antimycin in the presence of stigmatellin but did not slow down antimycin binding rates. These results are discussed in terms of half-of-the-sites activity of the dimeric bc1 complex.  相似文献   

14.
We have obtained evidence for electron transfer between cytochrome b subunits of the yeast bc(1) complex dimer by analyzing pre-steady state reduction of cytochrome b in the presence of center P inhibitors. The kinetics and extent of cytochrome b reduced by quinol in the presence of variable concentrations of antimycin decreased non-linearly and could only be fitted to a model in which electrons entering through one center N can equilibrate between the two cytochrome b subunits of the bc(1) complex dimer. The b(H) heme absorbance in a bc(1) complex inhibited at center P and preincubated with substoichiometric concentrations of antimycin showed a red shift upon the addition of substrate, which indicates that electrons from the uninhibited center N in one monomer are able to reach the b(H) heme at the antimycin-blocked site in the other. The extent of cytochrome b reduction by variable concentrations of menaquinol could only be fitted to a kinetic model that assumes electron equilibration between center N sites in the dimer. Kinetic simulations showed that non-rate-limiting electron equilibration between the two b(H) hemes in the dimer through the two b(L) hemes is possible upon reduction through one center N despite the thermodynamically unfavorable b(H) to b(L) electron transfer step. We propose that electron transfer between cytochrome b subunits minimizes the formation of semiquinone-ferrocytochrome b(H) complexes at center N and favors ubiquinol oxidation at center P by increasing the amount of oxidized cytochrome b.  相似文献   

15.
A new ruthenium-cytochrome c derivative was designed to study electron transfer from cytochrome bc1 to cytochrome c (Cc). The single sulfhydryl on yeast H39C;C102T iso-1-Cc was labeled with Ru(2,2'-bipyrazine)2(4-bromomethyl-4'-methyl-2,2'-bipyridine) to form Ru(z)-39-Cc. The Ru(z)-39-Cc derivative has the same steady-state activity with yeast cytochrome bc1 as wild-type yeast iso-1-Cc, indicating that the ruthenium complex does not interfere in the binding interaction. Laser excitation of reduced Ru(z)-39-Cc results in electron transfer from heme c to the excited state of ruthenium with a rate constant of 1.5 x 10(6) x s(-1). The resulting Ru(I) is rapidly oxidized by atmospheric oxygen in the buffer. The yield of photooxidized heme c is 20% in a single flash. Flash photolysis of a 1:1 complex between reduced yeast cytochrome bc1 and Ru(z)-39-Cc at low ionic strength leads to rapid photooxidation of heme c, followed by intracomplex electron transfer from cytochrome c1 to heme c with a rate constant of 1.4 x 10(4) x s(-1). As the ionic strength is raised above 100 mM, the intracomplex phase disappears, and a new phase appears due to the bimolecular reaction between solution Ru-39-Cc and cytochrome bc1. The interaction of yeast Ru-39-Cc with yeast cytochrome bc1 is stronger than that of horse Ru-39-Cc with bovine cytochrome bc1, suggesting that nonpolar interactions are stronger in the yeast system.  相似文献   

16.
The mitochondrial cytochrome bc(1) complex catalyzes the transfer of electrons from ubiquinol to cyt c while generating a proton motive force for ATP synthesis via the "Q-cycle" mechanism. Under certain conditions electron flow through the Q-cycle is blocked at the level of a reactive intermediate in the quinol oxidase site of the enzyme, resulting in "bypass reactions," some of which lead to superoxide production. Using analogs of the respiratory substrates ubiquinol-3 and rhodoquinol-3, we show that the relative rates of Q-cycle bypass reactions in the Saccharomyces cerevisiae cyt bc(1) complex are highly dependent by a factor of up to 100-fold on the properties of the substrate quinol. Our results suggest that the rate of Q-cycle bypass reactions is dependent on the steady state concentration of reactive intermediates produced at the quinol oxidase site of the enzyme. We conclude that normal operation of the Q-cycle requires a fairly narrow window of redox potentials with respect to the quinol substrate to allow normal turnover of the complex while preventing potentially damaging bypass reactions.  相似文献   

17.
We have investigated the interaction between monomers of the dimeric yeast cytochrome bc(1) complex by analyzing the pre-steady and steady state activities of the isolated enzyme in the presence of antimycin under conditions that allow the first turnover of ubiquinol oxidation to be observable in cytochrome c(1) reduction. At pH 8.8, where the redox potential of the iron-sulfur protein is approximately 200 mV and in a bc(1) complex with a mutated iron-sulfur protein of equally low redox potential, the amount of cytochrome c(1) reduced by several equivalents of decyl-ubiquinol in the presence of antimycin corresponded to only half of that present in the bc(1) complex. Similar experiments in the presence of several equivalents of cytochrome c also showed only half of the bc(1) complex participating in quinol oxidation. The extent of cytochrome b reduced corresponded to two b(H) hemes undergoing reduction through one center P per dimer, indicating electron transfer between the two cytochrome b subunits. Antimycin stimulated the ubiquinol-cytochrome c reductase activity of the bc(1) complex at low inhibitor/enzyme ratios. This stimulation could only be fitted to a model in which half of the bc(1) dimer is inactive when both center N sites are free, becoming active upon binding of one center N inhibitor molecule per dimer, and there is electron transfer between the cytochrome b subunits of the dimer. These results are consistent with an alternating half-of-the-sites mechanism of ubiquinol oxidation in the bc(1) complex dimer.  相似文献   

18.
Hunte C 《FEBS letters》2001,504(3):126-132
The ubiquinol:cytochrome c oxidoreductase (EC 1.20.2.2, QCR or cytochrome bc1 complex) is a component of respiratory and photosynthetic electron transfer chains in mitochondria and bacteria. The complex transfers electrons from quinol to cytochrome c. Electron transfer is coupled to proton translocation across the lipid bilayer, thereby generating an electrochemical proton gradient, which conserves the free energy of the redox reaction. The yeast complex was crystallized with antibody Fv fragments, a promising technique to obtain well-ordered crystals from membrane proteins. The high-resolution structure of the yeast protein reveals details of the catalytic sites of the complex, which are important for electron and proton transfer.  相似文献   

19.
This review is focused on the mechanism of ubiquinol oxidation by the cytochrome bc1 complex (bc1). This integral membrane complex serves as a "hub" in the vast majority of electron transfer chains. The bc1 oxidizes a ubiquinol molecule to ubiquinone by a unique "bifurcated" reaction where the two released electrons go to different acceptors: one is accepted by the mobile redox active domain of the [2Fe-2S] iron-sulfur Rieske protein (FeS protein) and the other goes to cytochrome b. The nature of intermediates in this reaction remains unclear. It is also debatable how the enzyme prevents short-circuiting that could happen if both electrons escape to the FeS protein. Here, I consider a reaction mechanism that (i) agrees with the available experimental data, (ii) entails three traits preventing the short-circuiting in bc1, and (iii) exploits the evident structural similarity of the ubiquinone binding sites in the bc1 and the bacterial photosynthetic reaction center (RC). Based on the latter congruence, it is suggested that the reaction route of ubiquinol oxidation by bc1 is a reversal of that leading to the ubiquinol formation in the RC. The rate-limiting step of ubiquinol oxidation is then the re-location of a ubiquinol molecule from its stand-by site within cytochrome b into a catalytic site, which is formed only transiently, after docking of the mobile redox domain of the FeS protein to cytochrome b. In the catalytic site, the quinone ring is stabilized by Glu-272 of cytochrome b and His-161 of the FeS protein. The short circuiting is prevented as long as: (i) the formed semiquinone anion remains bound to the reduced FeS domain and impedes its undocking, so that the second electron is forced to go to cytochrome b; (ii) even after ubiquinol is fully oxidized, the reduced FeS domain remains docked to cytochrome b until electron(s) pass through cytochrome b; (iii) if cytochrome b becomes (over)reduced, the binding and oxidation of further ubiquinol molecules is hampered; the reason is that the Glu-272 residue is turned towards the reduced hemes of cytochrome b and is protonated to stabilize the surplus negative charge; in this state, this residue cannot participate in the binding/stabilization of a ubiquinol molecule.  相似文献   

20.
The mitochondrial bc(1) complex catalyzes the oxidation of ubiquinol and the reduction of cytochrome (cyt) c. The cyt b mutation A144F has been introduced in yeast by the biolistic method. This residue is located in the cyt b cd(1) amphipathic helix in the quinol-oxidizing (Q(O)) site. The resulting mutant was respiration-deficient and was affected in the quinol binding and electron transfer rates at the Q(O) site. An intragenic suppressor mutation was selected (A144F+F179L) that partially alleviated the defect of quinol oxidation of the original mutant A144F. The suppressor mutation F179L, located at less than 4 A from A144F, is likely to compensate directly the steric hindrance caused by phenylalanine at position 144. A second set of suppressor mutations was obtained, which also partially restored the quinol oxidation activity of the bc(1) complex. They were located about 20 A from A144F in the hinge region of the iron-sulfur protein (ISP) between residues 85 and 92. This flexible region is crucial for the movement of the ISP between cyt b and cyt c(1) during enzyme turnover. Our results suggested that the compensatory effect of the mutations in ISP was due to the repositioning of this subunit on cyt b during quinol oxidation. This genetic and biochemical study thus revealed the close interaction between the cyt b cd(1) helix in the quinol-oxidizing Q(O) site and the ISP via the flexible hinge region and that fine-tuning of the Q(O) site catalysis can be achieved by subtle changes in the linker domain of the ISP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号