首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 597 毫秒
1.
DNA binding proteins that induce structural changes in DNA are common in both prokaryotes and eukaryotes. Integration host factor (IHF) is a multi-functional DNA binding and bending protein of Escherichia coli that can mediate protein-protein and protein-DNA interactions by bending DNA. Previously we have shown that the presence of a dA+dT element 5'-proximal to an IHF consensus sequence can affect the binding of IHF to a particular site. In this study the contribution of various sequence elements to the formation of IHF-DNA complexes was examined. We show that IHF bends DNA more when it binds to a site containing a dA+dT element upstream of its core consensus element than to a site lacking a dA+dT element. We demonstrate that IHF can be specifically crosslinked to DNA with binding sites either containing or lacking this dA+dT element. These results indicate the importance of flanking DNA and a dA+dT element in the binding and bending of a site by IHF.  相似文献   

2.
The bacteriophage P22-based challenge phage system was used to study the binding of integration host factor (IHF) to its H' recognition site in the attP region of bacteriophage lambda. We constructed challenge phages that carried H' inserts in both orientations within the P22 Pant promoter, which is required for antirepressor synthesis. We found that IHF repressed expression of Pant from either challenge phage when expressed from an inducible Ptac promoter on a plasmid vector. Mutants containing changes in the H' inserts that decrease or eliminate IHF binding were isolated by selecting challenge phages that could synthesize antirepressor in the presence of IHF. Sequence analysis of 31 mutants showed that most changes were base pair substitutions within the H' insert. Approximately one-half of the mutants contained substitutions that changed base pairs that are part of the IHF consensus binding site; mutants were isolated that contained substitutions at six of the nine base pairs of the consensus site. Other mutants contained changes at base pairs between the two subdeterminants of the H' site, at positions that are not specified in the consensus sequence, and in the dA + dT-rich region that flanks the consensus region of the site. Taken together, these results show that single-base-pair changes at positions outside of the proposed consensus bases can weaken or drastically disrupt IHF binding to the mutated site.  相似文献   

3.
Although the lambdoid bacteriophage phi 80 and P22 possess site-specific recombination systems analogous to bacteriophage lambda, they have different attachment (att) site specificities. We have identified and determined the nucleotide sequences of the att sites of phi 80 and P22 and have examined the interaction of these sites with purified Escherichia coli integration host factor (IHF). The sizes of the homologous core regions of the att sites vary greatly: P22 has a 46-base pair core, while phi 80 and lambda have 17- and 15-base pair cores, respectively. The core sequences of the three phage show no significant homology, although dispersed regions of homology in arm sequences indicate that the three phage att sites are related. All three att sites have a high A + T composition, and restriction fragments carrying these sites migrate anomalously upon polyacrylamide gel electrophoresis. IHF binds to a site to the left of the common core in the phi 80 and P22 phage att sites (attP) and to a site to the right of the core in P22 attP and attB (the bacterial att site). In the lambda system, IHF interacts with three regions on attP (designated H1, H2, and H') and none on attB (Craig N., and Nash, H.A. (1984) Cell 39, 707-716). Alignment of the IHF sites of all three phage results in a consensus sequence for IHF binding, Pyr-AANNNNTTGATAT. Among the three phage, the number of IHF sites differs; however, the location and orientation of the binding sites in relation to the respective core regions are well conserved. An IHF site analogous to lambda H2 is present in both phi 80 and P22 attP, while a site analogous to lambda H' is present in P22 attP. This conservation suggests that IHF plays a very similar role in the site-specific recombination pathways of all three phage, and that the flanking arm sequences are necessary for phi 80 and P22 attP function, as is the case for lambda attP function. These structural similarities presumably reflect a conservation of the mechanism of site-specific recombination for the three phage.  相似文献   

4.
We have determined the nucleotide sequences around two alternative sites cleaved in supercoiled PM2 DNA by single-strand-specific mung bean nuclease in different ionic environments. In 10 mM Tris-HC1 (pH 7.0, 37 degrees C), the major site is a dA+dT-rich sequence which maps with a known early denaturation region at 0.75 map units. About 30 cleavages occurred in a 135 bp region. Cleavages were largely excluded at (dA)n . (dT)n (n = 3-7) sequences. Cleavage patterns of this type have not been previously observed in dA+dT-rich sequences. With the addition of 0.1 M NaC1 the major alternative site occurred in a hyphenated inverted repeat sequence 500 bp away (0.70 map units) and did not map to an early denaturation region. One major and 4 minor cleavages occurred in the region between the repeats, suggesting that a hairpin containing at most a 12 bp stem and 10 base loop is recognized. The basis for nuclease recognition of the dA+dT-rich sequence is not clear. The differences in the sequences and cleavage patterns at the alternative sites indicate that their secondary structures differ.  相似文献   

5.
Bacteriophage lambda site-specific recombination requires the formation of higher-order protein-DNA complexes to accomplish synapsis of the partner attachment (att) sites as well as for the regulation of the integration and excision reactions. The att sites are composed of a core region, the actual site of strand exchange, and flanking arm regions. The attL site consists of two core sites (C and C'), an integration host factor (IHF) binding site (H'), and three contiguous Int binding arm sites (P'1, P'2, and P'3). In this study, we employed bacteriophage P22 challenge phages to determine which protein binding sites participate in attL complex formation in vivo. The C', H', and P'1 sites were critical, because mutations in these sites severely disrupted formation of the attL complex. Mutations in the C and P'2 sites were less severe, and alteration of the P'3 site had no effect on complex formation. These results support a model in which IHF, bound to the H' site, bends the attL DNA so that the Int molecule bound to P'1 also interacts with the C' core site. This bridged complex, along with a second Int molecule bound to P'2, helps to stabilize the interaction of a third Int with the C core site. The results also indicate that nonspecific DNA binding is a significant component of the Int-core interactions and that the cooperativity of Int binding can overcome the effects of mutations in the individual arm sites and core sites.  相似文献   

6.
P Prentki  M Chandler    D J Galas 《The EMBO journal》1987,6(8):2479-2487
The integration host factor of Escherichia coli (IHF) is a small, histone-like protein which participates in the integration of bacteriophage lambda into the E. coli chromosome and in a number of regulatory processes. Our recent footprinting analysis has shown that IHF binds specifically to the ends of the transposable element IS1, as well as to several sites within a short segment of the plasmid pBR322. We have extended our studies of the binding of the IHF molecule to these sites in vitro using a gel retardation assay. We report here that IHF bends the DNA upon binding, as judged from the strong cyclic dependence of the protein-induced mobility shift on the position of the binding site. Using cloned, synthetic ends of IS1 as substrates, we have found that some mutations within the conserved bases of the IHF consensus binding sequence abolish binding, and that alterations of the flanking sequences can greatly reduce IHF binding. The presence of multiple IHF sites on a single DNA fragment increases binding very little, indicating that IHF does not bind cooperatively in this complex. We discuss the possibility that DNA bending is related to the role IHF plays in forming and stabilizing nucleoprotein complexes, and suggest that bending at the IHF sites may be important to its diverse effects in the cell.  相似文献   

7.
8.
The specific DNA-binding protein integration host factor (IHF) of Escherichia coli stimulates the site-specific recombination reaction between the attP site of bacteriophage HP1 and the attB site of its host, Haemophilus influenzae, in vitro and also appears to regulate the expression of HP1 integrase. IHF interacts specifically with DNA segments containing the att sites and the integrase regulatory region, as judged by IHF-dependent retardation of relevant DNA fragments during gel electrophoresis. The locations of the protein-binding sites were identified by DNase I protection experiments. Three sites in the HP1 attP region bound IHF, two binding sites were present in the vicinity of the attB region, and one region containing three partially overlapping sites was present in the HP1 integrase regulatory segment. The binding sites defined in these experiments all contained sequences which matched the consensus IHF binding sequences first identified in the lambda attP region. An activity which stimulated the HP1 site-specific integration reaction was found in extracts of H. influenzae, suggesting that an IHF-like protein is present in this organism.  相似文献   

9.
Integration host factor (IHF) is a protein that binds to the H' site of bacteriophage lambda with sequence specificity. Genetic experiments implicated amino acid residue Glu(44) of the beta-subunit of IHF in discrimination against substitution of A for T at position 44 of the TTR submotif of the binding site (Lee, E. C., Hales, L. M., Gumport, R. I., Gardner, J. F. (1992) EMBO J., 11, 305-313). We have extended this observation by generating all possible single-base substitutions at positions 43, 44, and 45 of the H' site. IHF failed to bind these H' site substitution mutants in vivo. The K(d)(app) value for each H' site substitution, except for H'45A mutant, was reduced >2000-fold relative to the wild-type site. Substitution of amino acid beta-Glu(44) with alanine prevented IHF from discriminating against the H'44A variant but not the other H' site substitution mutants. Further analysis with other substitutions at position beta44 demonstrated that both oxygens of the wild-type glutamic acid are necessary for discrimination of AT at position 44. Because the beta-Glu(44) residue does not contact the DNA, this residue probably enforces binding specificity indirectly through interaction with amino acids that themselves contact the DNA.  相似文献   

10.
11.
12.
13.
A Levy  P Weisman-Shomer  M Fry 《Biochemistry》1989,28(18):7262-7267
Distamycin A, a polypeptide antibiotic, binds to dA.dT-rich regions in the minor groove of B-DNA. By virtue of its nonintercalating binding, distamycin acts as a potent inhibitor of the synthesis of DNA both in vivo and in vitro. Here we report that distamycin paradoxically stimulates Escherichia coli DNA polymerase I (pol I), its large (Klenow) fragment, and bacteriophage T4 DNA polymerase to copy oligo(dA).poly(dT) in vitro. It is found that distamycin increases the maximum velocity (Vmax) of the extension of the oligo(dA) primer by pol I without affecting the Michaelis constant (Km) of the primer. Gel electrophoresis of the extended primer indicates that the antibiotic specifically increases the rate of addition of the first three dAMP residues. Lastly, in the presence of both distamycin and the oligo(dT)-binding protein factor D, which increases the processivity of pol I, a synergistic stimulation of polymerization is attained. Taken together, these results suggest that distamycin stimulates synthesis by increasing the rate of initiation of oligo(dA) extension. The stimulatory effect of distamycin is inversely related to the stability of the primer-template complex. Thus, maximum stimulation is exerted at elevated temperatures and with shorter oligo(dA) primers. That distamycin increases the thermal stability of [32P](dA)9.poly(dT) is directly demonstrated by electrophoretic separation of the hybrid from dissociated [32P](dA)9 primer. It is proposed that by binding to the short primer-template duplex, distamycin stabilizes the oligo(dA).poly(dT) complex and, therefore, increases the rate of productive initiations of synthesis at the primer terminus.  相似文献   

14.
Using two direct methods we have studied the binding locations and site sizes of distamycin and penta-N-methylpyrrolecarboxamide on three DNA restriction fragments from pBR322 plasmid. We find that methidiumpropyl-EDTA.Fe(II) footprinting and DNA affinity cleaving methods report common binding locations and site sizes for the tri- and pentapeptides bound to heterogeneous DNA. The tripeptide distamycin binds 5-base-pair sites with a preference for poly(dA).poly(dT) regions. The pentapeptide binds 6-7-base-pair sites with a preference for poly(dA).poly(dT) regions. These results are consistent with distamycin binding as an isogeometric helix to the minor groove of DNA with the four carboxamide N-H's hydrogen bonding five A + T base pairs. The data supports a model where each of the carboxamide N-H's can hydrogen bond to two bases, either O(2) of thymine or N(3) of adenine, located on adjacent base pairs on opposite strands of the helix. In most (but not all) cases the tri- and pentapeptide can adopt two orientations at each A + T rich binding site.  相似文献   

15.
16.
The interaction of E. coli integration host factor (IHF) with the cohesive end sites (cos's) of phages lambda and 21 has been studied by the DNAase I footprinting technique. Six potential sites in cos lambda differ from the consensus IHF binding sequence by 1 to 3 base pairs. Of the six, one site, I1, binds IHF strongly. The I1 segment protected by IHF contains two sequences that closely match the IHF consensus binding sequence. Another site, I2, binds IHF moderately well, and three sites: 10', 13 and 14 bind IHF very weakly. The 10 site does not bind IHF under the conditions used here. In phage 21 the DNA segment extending to the right from the cohesive ends, which contains three potential IHF binding sites, was examined. Two sites bind IHF well; I1, the 21 analogue of one of the lambda I1 sites, and I0, a site not analogous to a lambda site. The third 21 site, I2, binds IHF moderately well, as does the analogous I2 site in lambda. The significance of the results for lambda DNA packaging is discussed.  相似文献   

17.
We have analysed the complete sequence of the Escherichia coli K12 isolate MG1655 genome for chromatin-associated protein binding sites, and compared the predicted location of predicted sites with experimental expression data from 'DNA chip' experiments. Of the dozen proteins associated with chromatin in E. coli, only three have been shown to have significant binding preferences: integration host factor (IHF) has the strongest binding site preference, and FIS sites show a weak consensus, and there is no clear consensus site for binding of the H-NS protein. Using hidden Markov models (HMMs), we predict the location of 608 IHF sites, scattered throughout the genome. A subset of the IHF sites associated with repeats tends to be clustered around the origin of replication. We estimate there could be roughly 6000 FIS sites in E. coli, and the sites tend to be localised in two regions flanking the replication termini. We also show that the regions upstream of genes regulated by H-NS are more curved and have a higher AT content than regions upstream of other genes. These regions in general would also be localised near the replication terminus.  相似文献   

18.
19.
cosB, the binding site for terminase, the DNA packaging enzyme of bacteriophage lambda, consists of three binding sites (called R3, R2 and R1) for gpNu1, the small subunit of terminase; and I1, a binding site for integration host factor (IHF), the DNA bending protein of Escherichia coli. cosB is located between cosN, the site where terminase introduces staggered nicks to generate cohesive ends, and the Nu1 gene; the order of sites is: cosN-R3-I1-R2-R1-Nu1. A series of lambda mutants have been constructed that have single base-pair C-to-T transition mutations in R3, R2 and R1. A single base-pair transition mutation within any one of the gpNul binding sites renders lambda dependent upon IHF for plaque formation. lambda phage with mutations in both R2 and R3 are incapable of plaque formation even in the presence of IHF. Phages that carry DNA insertions between R1 and R2, from 7 to 20 base-pairs long, are also IHF-dependent, demonstrating the requirement for a precise spacing of gpNu1 binding sites within cosB. The IHF-dependent phenotype of a lambda mutant carrying a deletion of the R1 sequence indicates that IHF obviates the need for terminase binding to the R1 site. In contrast, a lambda mutant deleted for R2 and R1 fails to form plaques on either IHF+ or IHF- cells, indicating terminase binding of R2 is involved in suppression of R mutants by IHF. A fourth R sequence, R4, is situated on the left side of cosN; a phage with a mutant R4 sequence shows a reduced burst size on both an IHF+ and an IHF- host. The inability of the R4- mutant to be suppressed by IHF, plus the fact that R4 does not bind gpNu1, suggests R4 is not part of cosB and may play a role in DNA packaging that is distinct from that of cosB.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号