首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To test the hypothesis that renal tissue contains multiple distinct water channels, mRNA prepared from either cortex, medulla, or papilla of rat kidney was injected into Xenopus oocytes. The osmotic water permeability (Pf) of oocytes injected with either 50 nl of water or 50 nl of renal mRNA (1 microgram/microliter) was measured 4 d after the injection. Pf was calculated from the rate of volume increase on exposure to hyposmotic medium. Injection of each renal mRNA preparation increased the oocyte Pf. This expressed water permeability was inhibited by p-chloromercuriphenylsulfonate and had a low energy of activation, consistent with the expression of water channels. The coinjection of an antisense oligonucleotide for CHIP28 protein, at an assumed > 100-fold molar excess, with either cortex, medulla, or papilla mRNA reduced the expression of the water permeability by approximately 70, 100, and 30%, respectively. Exposure of the oocyte to cAMP for 1 h resulted in a further increase in Pf only in oocytes injected with medulla mRNA. This cAMP activation was not altered by the CHIP28 antisense oligonucleotide. These results suggest that multiple distinct water channels were expressed in oocytes injected with mRNA obtained from sections of rat kidney: (a) CHIP28 water channels in cortex and medulla, (b) cAMP-activated water channels in medulla, and (c) cAMP-insensitive water channels in papilla.  相似文献   

2.
Water permeability of the basolateral membrane was estimated in isolated fragments of OMCD or IMCD in the Wistar rats. Apical surface of the fragments was blocked with oil injected into the lumen. Apparent water permeability coefficient (Pf) was measured by the rate of epithelium swelling following transition from hypertonic to isotonic medium (600 mOsm to 300 mOsm). Water deprivation caused significant increase in the Pf value in OMCD and IMCD fragments. Desmopressin (10(-8) M) increased water permeability in hydrated rats both in OMCD and IMCD. Mercury chloride decreased the Pf and abolished the effect of desmopressin in reversible manner. Estimation of aquaporins 2, 3, 4 mRNA content in the renal medulla was performed by semi-quantitative RT-PCR. Content of AQP4 and AQP2 mRNA in dehydrated animals was significantly higher than in hydrated ones both in outer medulla and inner medulla. Expression of AQP3 increased during dehydration only in the inner medulla. The findings reveal that water permeability of OMCD and IMCD can be increased by physiological stimuli, e.g. water deprivation. The activation of gene expression of the key elements of vasopressin signal system seems to contribute to this reaction.  相似文献   

3.
The existence and identity of protein water transporters in biological membranes has been uncertain. Osmotic water permeability (Pf) was measured in defolliculated Xenopus oocytes microinjected with water or mRNA from kidney cortex, kidney papilla, reticulocyte, brain, and muscle. Pf was measured by quantitative image analysis from the time course of oocyte swelling in response to an osmotic gradient. When assayed at 10 degrees C, Pf in water-injected oocytes increased from (3.6 +/- 0.9) x 10(-4) cm/s (S.D., n = 16) to 74 x 10(-4) cm/s with addition of amphotericin B, showing absence of unstirred layers. At 48-72 h after injection of 50 ng of unfractionated mRNA, Pf (in cm/s x 10(-4] was: 4.0 +/- 1.5 (rabbit brain, n = 15), 4.2 +/- 1.8 (rabbit muscle, n = 10), 18.4 +/- 6.3 (rabbit reticulocyte, n = 20), 16.1 +/- 5.6 (rat renal papilla, n = 24), 12.9 +/- 6.3 (rat renal cortex, n = 20), 14.4 +/- 6.1 (rabbit renal papilla, n = 15), and 11.8 +/- 3.4 (rabbit renal cortex, n = 8). In oocytes injected with mRNA from rat renal papilla, Pf was inhibited reversibly by 0.3 mM HgCl2 (4.1 +/- 1.6, n = 10); expressed water channels from kidney and red cell had activation energies of less than 4 kcal/mol. These results show functional oocyte expression of water channels from red cell, kidney proximal tubule (cortex), and the vasopressin-sensitive kidney collecting tubule (papilla), indicating that water channels are proteins, and providing an approach for the expression cloning of water channels.  相似文献   

4.
The permeability of cells is important for cryopreservation. Previously, we showed in mice that the permeability to water and cryoprotectants of oocytes and embryos at early cleavage stages (early embryos) is low because these molecules move across the plasma membrane predominantly by simple diffusion through the lipid bilayer, whereas permeability of morulae and blastocysts is high because of a water channel, aquaporin 3 (AQP3). In this study, we examined the pathways for the movement of water and cryoprotectants in bovine oocytes/embryos and the role of AQP3 in the movement by determining permeability, first in intact bovine oocytes/embryos, then in bovine morulae with suppressed AQP3 expression, and finally in mouse oocytes expressing bovine AQP3. Results suggest that water moves through bovine oocytes and early embryos slowly by simple diffusion, as is the case in mice, although channel processes are also involved in the movement. On the other hand, water appears to move through morulae and blastocysts predominantly by facilitated diffusion via channels, as in mice. Like water, cryoprotectants appear to move through bovine oocytes/early embryos mostly by simple diffusion, but channel processes could also be involved in the movement of glycerol and ethylene glycol, unlike that in mice. In bovine morulae, although glycerol and ethylene glycol would move predominantly by facilitated diffusion, mostly through AQP3, as in mice, dimethylsulfoxide appears to move predominantly by simple diffusion, unlike in mice. These results indicate that permeability-related properties of bovine oocytes/embryos are similar to those of mouse oocytes/embryos, but species-specific differences do exist.  相似文献   

5.
The vasopressin-regulated water channel aquaporin-2 (AQP2) is known to tetramerize in the apical membrane of the renal tubular cells and contributes to urine concentration. We identified three novel mutations, each in a single allele of exon 4 of the AQP2 gene, in three families showing autosomal dominant nephrogenic diabetes insipidus (NDI). These mutations were found in the C-terminus of AQP2: a deletion of G at nucleotide 721 (721 delG), a deletion of 10 nucleotides starting at nucleotide 763 (763-772del), and a deletion of 7 nucleotides starting at nucleotide 812 (812-818del). The wild-type AQP2 is predicted to be a 271-amino acid protein, whereas these mutant genes are predicted to encode proteins that are 330-333 amino acids in length, because of the frameshift mutations. Interestingly, these three mutant AQP2s shared the same C-terminal tail of 61 amino acids. In Xenopus oocytes injected with mutant AQP2 cRNAs, the osmotic water permeability (Pf) was much smaller than that of oocytes with the AQP2 wild-type (14%-17%). Immunoblot analysis of the lysates of the oocytes expressing the mutant AQP2s detected a band at 34 kD, whereas the immunoblot of the plasma-membrane fractions of the oocytes and immunocytochemistry failed to show a significant surface expression, suggesting a defect in trafficking of these mutant proteins. Furthermore, coinjection of wild-type cRNAs with mutant cRNAs markedly decreased the oocyte Pf in parallel with the surface expression of the wild-type AQP2. Immunoprecipitation with antibodies against wild-type and mutant AQP2 indicated the formation of mixed oligomers composed of wild-type and mutant AQP2 monomers. Our results suggest that the trafficking of mutant AQP2 is impaired because of elongation of the C-terminal tail, and the dominant-negative effect is attributed to oligomerization of the wild-type and mutant AQP2s. Segregation of the mutations in the C-terminus of AQP2 with dominant-type NDI underlies the importance of this domain in the intracellular trafficking of AQP2.  相似文献   

6.
Kidneys of new-born animals are resistant to arginine vasopressin (AVP). The ability of the hormone to regulate water permeability of the collecting duct can be seen from weaning period, probably due to the maturation of the intracellular signaling pathway. The purpose of the present work was to investigate the effect of V2 receptor agonist dDAVP on the water permeability of OMCD basolateral membrane in 10-, 22- and 60-day old Wistar rats. We also estimated ontogenetic gene expression of AQP2, AQP3, AQP4 and V2 receptor. Osmotic water permeability (Pf) of the basolateral membrane of microdissected OMCD was measured under control conditions and after incubation with the agonist V2 receptor desmopressin (dDAVP; 10(-7) M). Water permeability in 10- and 22-day old rats under control conditions were significantly higher than in adults. Desmopressin stimulated significant increase of this parameter in 22-day old pups (Pf = = 125 +/- 4.85; Pf = 174 +/- 8.2 microns/s, p < 0.001) and adult rats (Pf = 100.5 +/- 7.38; Pf = 178.8 +/- 9.54 microns/s, p < 0.001). Osmotic water permeability of the OMCD basolateral membrane in 10-day old rats does not depend on dDAVP (Pf = 172.5 +/- 23.8; Pf = 164.8 +/- 34 microns/s). With the RT-PCR, we observed a gradual increase of AQP2 and V2 receptor genes expression during postnatal ontogenesis. The gene expression of AQP3 and AQP4 remained unchanged during postnatal ontogenesis. In general, the water permeability of the OMCD basolateral membrane of rats can be stimulated by AVP since the 22nd day of postnatal life. The water permeability of the OMCD basolateral membrane under control conditions gradually decreased during postnatal development, while gene expression of AQP3 and AQP4 was unchanged. The mechanism of this decrease remains to be established.  相似文献   

7.
We reported increased water permeability and a low urea reflection coefficient in Xenopus oocytes expressing urea transporter UT-B (former name UT3), suggesting that water and urea share a common aqueous pathway (Yang, B., and Verkman, A. S. (1998) J. Biol. Chem. 273, 9369-9372). Although increased water permeability was confirmed in the Xenopus oocyte expression system, it has been argued (Sidoux-Walter, F., Lucien, N., Olives, B., Gobin, R., Rousselet, G., Kamsteeg, E. J., Ripoche, P., Deen, P. M., Cartron, J. P., and Bailly, P. (1999) J. Biol. Chem. 274, 30228-30235) that UT-B does not transport water when expressed at normal levels in mammalian cells such as erythrocytes. To quantify UT-B-mediated water transport, we generated double knockout mice lacking UT-B and the major erythrocyte water channel, aquaporin-1 (AQP1). The mice had reduced survival, retarded growth, and defective urinary concentrating ability. However, erythrocyte size and morphology were not affected. Stopped-flow light scattering measurements indicated erythrocyte osmotic water permeabilities (in cm/s x 0.01, 10 degrees C): 2.1 +/- 0.2 (wild-type mice), 2.1 +/- 0.05 (UT-B null), 0.19 +/- 0.02 (AQP1 null), and 0.045 +/- 0.009 (AQP1/UT-B null). The low water permeability found in AQP1/UT-B null erythrocytes was also seen after HgCl(2) treatment of UT-B null erythrocytes or phloretin treatment of AQP1 null erythrocytes. The apparent activation energy for UT-B-mediated water transport was low, <2 kcal/mol. Estimating 14,000 UT-B molecules per mouse erythrocyte, the UT-B-dependent P(f) of 0.15 x 10(-4) cm/s indicated a substantial single channel water permeability of UT-B of 7.5 x 10(-14) cm(3)/s, similar to that of AQP1. These results provide direct functional evidence for UT-B-facilitated water transport in erythrocytes and suggest that urea traverses an aqueous pore in the UT-B protein.  相似文献   

8.
Taurine is an important osmolyte involved in cell volume regulation. During regulatory volume decrease it is released via a volume-sensitive organic osmolyte/anion channel. Several molecules have been suggested as candidates for osmolyte release. In this study, we chose three of these, namely ClC-2, ClC-3 and ICln, because of their expression in rat astrocytes, a cell type which is known to release taurine under hypotonic stress, and their activation by hypotonic shock. As all three candidates were also suggested to be chloride channels, we investigated their permeability for both chloride and taurine under isotonic and hypotonic conditions using the Xenopus laevis oocyte expression system. We found a volume-sensitive increase of chloride permeability in ClC-2-expressing oocytes only. Yet, the taurine permeability was significantly increased under hypotonic conditions in oocytes expressing any of the tested candidates. Further experiments confirmed that the detected taurine efflux does not represent unspecific leakage. These results suggest that ClC-2, ClC-3 and ICln either participate in taurine transport themselves or upregulate an endogenous oocyte osmolyte channel. In either case, the taurine efflux of oocytes not being accompanied by an increased chloride flux suggests that taurine and chloride can be released via two separate pathways.  相似文献   

9.
S T Tsai  R B Zhang  A S Verkman 《Biochemistry》1991,30(8):2087-2092
Erythrocytes from several mammalian species contain mercurial-sensitive water transporters. By a stopped-flow light scattering technique, osmotic water permeability (Pf) was exceptionally high in rabbit erythrocytes (0.053 +/- 0.002 cm/s) and reversibly inhibited by 98% by p-(chloromercuri)benzenesulfonate (pCMBS). The activation energy (Ea) was 4.6 kcal/mol (15-37 degrees C). pCMBS inhibition was half-maximal at 0.1 mM (60-min incubation); at 1 mM pCMBS, half-maximal inhibition occurred in 8 min. Pf was also inhibited by HgCl2 and pCMB with greater than 90% inhibition in 5 min. There was no inhibition by high concentrations of phloretin, DNDS, cytochalasin B, amiloride, ouabain, furosemide, and several proteases. In defolliculated Xenopus oocytes microinjected with 50 nL of water or unfractionated mRNA (1 mg/mL) from rabbit reticulocytes, oocyte Pf assayed at 10 degrees C after 72-h incubation increased from (4 +/- 1) X 10(-4) cm/s (water injected) to (18 +/- 2) X 10(-4) cm/s (mRNA injected). Pf increased linearly with [mRNA] (0-75 ng/oocyte) and was inhibited slowly and reversibly by pCMBS and immediately by HgCl2 but not by cytochalasin B, phloretin, or DNDS. Ea was 9.6 kcal/mol (water injected) and 2.6 kcal/mol (mRNA injected). These results demonstrate that rabbit erythrocytes have the highest Pf and the greatest percentage inhibition of Pf by mercurials of any mammalian erythrocyte studied. The characteristics of the expressed and native water channels were similar, suggesting that the erythrocyte water channel is a membrane protein suitable for expression cloning.  相似文献   

10.
Aquaporin-2 (AQP2) water channel mutations cause autosomal recessive and dominant nephrogenic diabetes insipidus (NDI). Expressed in oocytes, a mutant in dominant (AQP2-E258K), but not in recessive (AQP2-R187C), NDI conferred a specific dominant-negative effect on wild-type (wt) AQP2 water permeability (Pf) only at low expression levels. Since at these levels, the yield of conventional-isolated plasma membranes was too low, an improved technique to semiquantify AQP2 in the plasma membrane was needed. Antibodies against the C-loop of AQP2 were not applicable since they were unspecific and introduction of a tag into this loop caused misfolding and ER retardation. Membrane-impermeable biotin analogues turned out to label intracellular AQP2 proteins. Therefore, a method has been developed which generates a high yield of nearly pure plasma membranes, which enables semiquantification of plasma membrane proteins expressed at low levels in oocytes. Our new method allows for phenotype-genotype correlation studies in a wide range of channelopathies.  相似文献   

11.
Two aquaporin (AQP)-type water channels are expressed in mammalian cornea, AQP1 in endothelial cells and AQP5 in epithelial cells. To test whether these aquaporins are involved in corneal fluid transport and transparency, we compared corneal thickness, water permeability, and response to experimental swelling in wild type mice and transgenic null mice lacking AQP1 and AQP5. Corneal thickness in fixed sections was remarkably reduced in AQP1 null mice and increased in AQP5 null mice. By z-scanning confocal microscopy, corneal thickness in vivo was (in microm, mean +/- S.E., n = 5 mice) 123 +/- 1 (wild type), 101 +/- 2 (AQP1 null), and 144 +/- 2 (AQP5 null). After exposure of the external corneal surface to hypotonic saline (100 mosm), the rate of corneal swelling (5.0 +/- 0.3 microm/min, wild type) was reduced by AQP5 deletion (2.7 +/- 0.1 microm/min). After exposure of the endothelial surface to hypotonic saline by anterior chamber perfusion, the rate of corneal swelling (7.1 +/- 1.0 microm/min, wild type) was reduced by AQP1 deletion (1.6 +/- 0.4 microm/min). Base-line corneal transparency was not impaired by AQP1 or AQP5 deletion. However, the recovery of corneal transparency and thickness after hypotonic swelling (10-min exposure of corneal surface to hypotonic saline) was remarkably delayed in AQP1 null mice with approximately 75% recovery at 7 min in wild type mice compared with 5% recovery in AQP1 null mice. Our data indicate that AQP1 and AQP5 provide the principal routes for corneal water transport across the endothelial and epithelial barriers, respectively. The impaired recovery of corneal transparency in AQP1 null mice provides evidence for the involvement of AQP1 in active extrusion of fluid from the corneal stroma across the corneal endothelium. The up-regulation of AQP1 expression and/or function in corneal endothelium may reduce corneal swelling and opacification following injury.  相似文献   

12.
Water channels AQP7 and AQP8 may be involved in transcellular water movement in the small intestine. We show that both AQP7 and AQP8 mRNA are expressed in rat small intestine. Immunoblot and immunohistochemistry experiments demonstrate that AQP7 and AQP8 proteins are present in the apical brush border membrane of intestinal epithelial cells. We investigated the effect of several metals and pH on the osmotic water permeability (Pf) of brush border membrane vesicles (BBMVs) and of AQP7 and AQP8 expressed in a cell line. Hg2+, Cu2+, and Zn2+ caused a significant decrease in the BBMV Pf, whereas Ni2+ and Li+ had no effect. AQP8-transfected cells showed a reduction in Pf in the presence of Hg2+ and Cu2+, whereas AQP7-transfected cells were insensitive to all tested metals. The Pf of both BBMVs and cells transfected with AQP7 and AQP8 was not affected by pH changes within the physiological range, and the Pf of BBMVs alone was not affected by phlorizin or amiloride. Our results indicate that AQP7 and AQP8 may play a role in water movement via the apical domain of small intestine epithelial cells. AQP8 may contribute to the water-imbalance-related clinical symptoms apparent after ingestion of high doses of Hg2+ and Cu2+.  相似文献   

13.
14.
Su W  Qiao Y  Yi F  Guan X  Zhang D  Zhang S  Hao F  Xiao Y  Zhang H  Guo L  Yang L  Feng X  Ma T 《IUBMB life》2010,62(11):852-857
Aquaporin-8 (AQP8) is a water channel expressed extensively in male and female reproductive systems. But its physiological functions are largely unknown. In the present study, we first found significantly increased number of offspring delivered by AQP8(-/-) mothers compared with wild-type mothers in cross-mating experiments. Comparison of ovulation in the two genotypes demonstrated that AQP8(-/-) ovaries released more oocytes (9.5 ± 1.9 vs. 7.1 ± 2.1 in normal ovulation and 37.8 ± 6.7 vs. 27.9 ± 5.7 in superovulation). Histological analysis showed increased number of corpus luteums in mature AQP8(-/-) ovaries, suggesting increased maturation and ovulation of follicles. By RT-PCR, western blot and immunohistochemistry analyses, we determined the expression of AQP8 in mouse ovarian granulosa cells. Granulosa cells isolated from AQP8(-/-) mice showed 45% of decreased membrane water permeability than wild-type mice. As the atresia of ovarian follicles is primarily due to apoptosis of granulosa cells, we analyzed the apoptosis of isolated granulosa cells from wild-type and AQP8(-/-) mice. The results indicated significantly lower apoptosis rate in AQP8(-/-) granulosa cells (21.3 ± 3.6% vs. 32.6 ± 4.3% in AQP8(+/+) granulosa cells). Taken together, we conclude that AQP8 deficiency increases the number of mature follicles by reducing the apoptosis of granulosa cells, thus increasing the fertility of female mice. This discovery may offer new insight of improving female fertility by reducing granulosa cell apoptosis through AQP8 inhibition.  相似文献   

15.
Cope's gray tree frog Hyla chrysoscelis accumulates glycerol during cold acclimation. We hypothesized that, during this process, gray tree frogs adjust renal filtration and/or reabsorption rates to retain accumulated glycerol. During cold acclimation, plasma concentrations of glycerol rose >200-fold, to 51 mmol/l. Although fractional water reabsorption decreased, glomerular filtration rate (GFR) and, consequently, urine flow were <5% of warm levels, and fractional glycerol reabsorption increased. In contrast, dehydrated frogs increased fractional water reabsorption, decreased GFR, and did not accumulate glycerol. We hypothesized that expression of proteins from the aquaporin (AQP)/glyceroporin (GLP) family was associated with changing patterns of water and glycerol movement. We cloned the cDNA for three such proteins, quantified mRNA expression in nine tissues using real-time quantitative PCR, and functionally characterized them using a Xenopus oocyte expression system. HC-1, an AQP1-like water channel conferring low glycerol permeability, is expressed ubiquitously in warm- and cold-acclimated tissues. HC-2, a water channel most similar to AQP2, is primarily expressed in organs of osmoregulation. HC-3, which is most similar to AQP3, is functionally characterized as a GLP, with low permeability to water but high permeability to glycerol. Aspects of expression levels and functional characteristics varied between cold and warm conditions for each of the three AQPs, suggesting a complex pattern of involvement in osmoregulation related to thermal acclimation.  相似文献   

16.
In the study, the role of PKC and Ca++ in vasopressin regulation of the plasma membrane water permeability was studied in the cells of the mouse kidney collecting duct. Coefficient of osmotic water permeability of total cell surface (Pf) was calculated from the initial rate of cell swelling following the osmotic shock caused by changing the medium osmolarity from isotonic to hypotonic (300 mOsm to 200 mOsm). Desmopressin (dDAVP 1 nM) increased the Pf in hydrated mice from 168.4 +/- 11.8 microm/s up to 231.3 +/- 14.7 microm/s. The Ca++ chelator BAPTA prevented the desmopressin-induced increase in water permeability. Inhibition of PKC (Ro-31-8220 0.1 microM) also abolished the desmopressin-stimulated increase of plasma membrane water permeability, whereas inhibitor of PKC alone did not suppress the stimulation of the water permeability by db-cAMP. The PKC activity and calciumdependent second messengers seem to be important for regulation of water permeability by vasopressin.  相似文献   

17.
Using quantitative laser-scanning microtomography (QLSM), the response of mature mouse oocytes to hypotonic stress was investigated. The response exhibited the following features: (1) oocytes were capable of regulatory volume decrease (RVD); (2) unlike zygote and two-cell embryo, the oocyte volume recovery was not complete even by 120 min; (3) millimolar and submillimolar concentrations of glycine arrested the development of RVD in oocytes.  相似文献   

18.
19.
Ribonuclease protection assays have been used to quantitatively assess changes in steady-state levels of specific mRNAs during oogenesis and early embryogenesis in mice. The mRNAs encode ZP3 (a glycoprotein that serves as a sperm receptor), LDH-B (heart-type lactate dehydrogenase), and MOM-1 (a protein of unknown function). MOM-1 and LDH-B are expressed in a variety of adult mouse tissues and midgestation embryos, whereas ZP3 expression is restricted completely to oocytes. All three mRNAs are expressed by growing mouse oocytes and accumulate to unusually high levels in fully grown oocytes as compared to somatic cells; 240,000, 200,000 and 74,000 copies mRNA per fully grown oocyte for ZP3, LDH-B and MOM-1, respectively. Steady-state levels of LDH-B and MOM-1 mRNA undergo a modest decline (approximately 20-40%) during ovulation when fully grown oocytes become unfertilized eggs and, in general, mirror the reported change in poly(A)+RNA levels during this period of development. On the other hand, the level of ZP3 mRNA declines dramatically (approximately 98%) during ovulation, from approximately 240,000 copies per oocyte to approximately 5000 copies per unfertilized egg, and ZP3 mRNA is undetectable in fertilized eggs (less than 1000 copies per fertilized egg). MOM-1 mRNA is expressed at relatively low levels in morulae (approximately 2000 copies per embryo) and blastocysts (approximately 5000 copies per embryo), whereas ZP3 mRNA remains undetectable (less than 1000 copies per embryo) at these stages of preimplantation development. These findings are discussed in the context of overall gene expression during oocyte growth, meiotic maturation and early embryogenesis in mice.  相似文献   

20.
Both the acinar and ductal cells of the pancreas secrete a near-isotonic fluid and may thus be sites of aquaporin (AQP) water channel expression. Northern blot analysis of mRNA from whole rat pancreas revealed high levels of AQP1 and AQP8 expression, whereas lower levels of AQP4 and AQP5 expression were just detectable by RT-PCR Southern blot analysis. Immunohistochemistry showed that AQP1 is localized in the microvasculature, whereas AQP8 is confined to the apical pole of the acinar cells. No labeling of acinar, ductal, or vascular tissue was detected with antibodies to AQP2-7. With immunoelectron microscopy, AQP8 labeling was observed not only at the apical membrane of the acinar cells but also among small intracellular vesicles in the subapical cytoplasm, suggesting that there may be regulated trafficking of AQP8 to the apical plasma membrane. To evaluate the contribution of AQPs to the membrane water permeability, video microscopy was used to measure the swelling of acinar cells in response to hypotonic stress. Osmotic water permeability was reduced by 90% following exposure to Hg(2+). Since AQP8 is confined to the apical membrane, the marked effect of Hg(2+) suggests that other water channels may be expressed in the basolateral membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号