首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
2.
3.
4.
5.
Schikora  Adam  Schmidt  Wolfgang 《Plant and Soil》2002,241(1):87-96
Patterning of epidermal cells is subject to genetic regulation but also influenced by environmental stimuli. To adapt to unfavorable environmental conditions plants have developed various mechanisms to increase the plasma membrane's surface area of epidermal root cells, for example through the formation of root hairs and differentiation of rhizodermal transfer cells. Mechanisms controlling cell fate speciation in the rhizodermis were investigated by application of hormones and hormone antagonists. In addition, the effect of Fe deficiency on root epidermal patterning and Fe(III)-reduction activity was examined. In the iron-hyperaccumulating pea mutants dgl and brz and in the Arabidopsis mutant man1 Fe(III)-reduction activity was found to be up-regulated under both high and low iron supply. In contrast, morphological responses such as the development of transfer cells and extranumerary root hairs was repressed by a high iron concentration in the external medium. All morphological responses can be mimicked by exogenous application of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) or the auxin analog 2,4-dichlorophenoxyacetic acid (2,4-D). Conversely, Fe(III)-reduction rates were not influenced or only slightly affected by the hormone treatment. Application of inhibitors of ethylene synthesis, ethylene action or auxin transport was effective only in inhibiting the formation of extra root hairs, indicating that these hormones are not required for transfer cell formation or expression of Fe(III) reduction. These data suggest that the Fe reductase induced by iron stress does not depend on the formation of transfer cells and further imply separate regulatory pathways for the two responses. The data are compatible with a model in which root reduction activity is modulated by a shoot-borne signal coordinating iron uptake with the shoot demand, while the epidermal phenotype is primarily dependent on the intracellular iron concentration of root cells.  相似文献   

6.
Summary The tomato mutantfer (Lycopersion esculentum L. T3238fer) displayed a chlorotic phenotype at normal external Fe levels. Root cells of the mutant are incompetent to take up iron in adequate amounts and are incapable to induce any of the known responses to Fe deficiency stress. We report here that the ethylene precursor 1-aminocyclopropane-l-carboxylic acid and the auxin analog 2,4-dichlorophenoxyacetic acid induce the formation of extra root hairs and transfer cells in the epidermis, thus mimicking the root-morphological Fe stress responses. In contrast, the physiological reactions involved in iron acquisition are not affected by the hormone treatment. These results indicate that ethylene is essential for transducing environmental signals into adaptive changes in root morphology. The data further suggest that the mutation does not affect necessary steps in the differentiation processes of epidermal cells. TheFER gene appears to control sensing of iron levels and/or the regulation of mechanisms involved in iron uptake.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - ACC 1-aminocyclopropane-1-carboxylic acid - BPDS bathophenanthrolinedisulfonate - FeHEDTA Fe hydroxyethylethylenediaminetriacetic acid  相似文献   

7.
Reduction of FeIIIEDTA by excised roots of soybean seedlings (Glycine max L.) is stimulated by l-malate in the bathing solution. Reduction occurs much more rapidly with roots of seedlings grown in the absence of iron than with roots of seedlings grown with iron. Cell-wall preparations from these roots catalyze reduction of FeIIIEDTA by NADH. They also contain NAD+-dependent l-malate dehydrogenase. Enzymic activity of the cell-wall preparations is not affected by previous iron nutrition of the plants, but the amount of l-malate in the roots is increased when seedlings have been deprived of iron. We propose that reduction of iron before absorption by soybean roots occurs in the cell-wall space, with l-malate secreted from the roots serving as the source of electrons. Part of the iron reductase activity of the cell walls can be solubilized by extraction with 1 molar NaCl. The enzyme has been partially purified.  相似文献   

8.
Abstract The development of suberin lamellae in the hypodermis of Zea mays cv. LG 11 was observed by electron microscopy and the presence of suberin inferred from autoliuorescence and by Sudan black B staining in nodal (adventitious) and primary (seminal) root axes. Suberin lamellae were evident at a distance of 30–50 mm from the tip of roots growing at 20°C and became more prominent with distance from the tip. Both oxygen deficiency and growth at 13°C produced shorter roots in which the hypodermis was suberized closer to the root tip. There were no suberin lamellae in epidermal cells or cortical collenchyma adjacent to the hypodermis. Plasmodesmata were not occluded by the suberin lamellae: there were twice as many of them in the inner tangential hypodermal wall (1,14 μn?2) as in the junction between the epidermis and hypodermis (0.54 μm?2). Water uptake by seminal axes (measured by micropotometry) was greater at distances more than 100 mm from the root lip than in the apical zone where the hypodermis was unsuberized. In the more mature zones of roots grown at 13°C rates of water uptake were greater than in roots grown at 20°C even though hypodermal suberization was more marked. Sleeves of epidermal/hypodermal cells (plus some accessory collenchyma) were isolated from the basal 60 mm of nodal axes by enzymatic digestion (drisclase). The roots were either kept totally immersed in culture solution or had the basal 50 mm exposed to moist air above the solution surface. In both treatments the permeabilities to tritiated water and 86Rb were low (circa 10?5mms?1) in sleeves isolated from the extreme base. In roots grown totally immersed, however, the permeability of sleeves increased 10 to 50-fold over a distance of 40 mm. In roots exposed to moist air the permeability remained at a low level until the point where the root entered the culture solution and then increased rapidly (> 50-fold in a distance of 8 mm). Growth of roots in oxygen depleted (5% O2) solutions promoted the development of extensive cortical aerenchymas. These developments were not associated with any reduction in permeability of sleeves isolated from the basal 40 mm of the axis. It was concluded that the presence of suberin lamellae in hypodermal walls does not necessarily indicate low permeability of cells or tissues to water or solutes. The properties of the walls (lamellae?) can be greatly changed by exposure to moist air, perhaps due to increased oxygen availability.  相似文献   

9.
10.
11.
The possibility that changes in the plasticity of expanding cell walls are involved in regulating early leaf growth responses to nutrient deficiencies in monocot plants was investigated. Intact maize seedlings (Zea mays L.) which were hydroponically grown with their roots in low-nutrient solution (1 mol m?3 CaCl2) showed early inhibition of first-leaf growth, as compared with seedlings on complete nutrient solution. This early inhibition of leaf growth was not associated with reduced cell production. However, segmental elongation along the cell expansion zone at the base of the leaf and the lengths of mature epidermal cells were reduced by the low-nutrient treatment. Solute (osmotic) potentials in the expanding leaf tissues were unchanged. In contrast, low-nutrient treatments significantly altered leaf plasticity, i.e. the irreversible extension caused by applying a small force in the direction of leaf growth. For example, in vivo plasticity decreased, along with leaf growth, after transfer of seedlings from complete nutrient solution to low-nutrient solution for 15 h. Conversely, in vivo plasticity increased, along with leaf growth, after transfer of plants previously grown on low-nutrient solution to complete nutrient solution for 15 h. The nutrient treatments also induced similar changes in the in vitro plasticity of the expanding leaf cell walls. There were no consistent changes in elasticity. Thus, reductions in the plasticity of expanding leaf cell walls appear to be involved in controlling the early inhibition of maize leaf growth by root imposition of nutrient stress.  相似文献   

12.
The composition of the aliphatic components of suberin in the stele and cortex of young corn (Zea mays L.) roots was determined by combined gas-liquid chromatography/mass spectrometry of the LiAlD4 depolymerization products. ω-Hydroxy acids were shown to be the major class of the aliphatic components of both the hypodermal (35%) and endodermal (28%) polymeric materials with the dominant chain length being C24 in the former and C16 in the latter. Nitrobenzene oxidation of the roots generated p-hydroxybenzaldehyde and vanillin with much less syringaldehyde. Electron microscopic examination of the hypodermal and endodermal cell walls from roots of corn plants grown in a Mg2+ -deficient (0.03 millimolar) nutrient solution showed that these walls were more heavily suberized than the analogous walls of roots from plants grown in normal (2 millimolar) Mg2+ levels. Analysis of the LiAlD4 depolymerization products of the suberin polymers from these roots showed that the roots grown in low Mg2+ had 3.5 times as much aliphatic suberin monomers on a weight basis as the roots from plants grown in nutrient with normal Mg2+ levels. Roots from plants grown in Mg2+ -deficient nutrient solution released 3.8 times the amount of aromatic aldehydes upon nitrobenzene oxidation as that released from normal roots. As the degree of Mg2+ deficiency of the nutrient solution was increased, there was an increase in the aliphatic and aromatic components characteristic of suberin. Thus, both ultrastructural and chemical evidence strongly suggested that Mg2+ deficiency resulted in increased suberization of the cell walls of both hypodermis and endodermis of Zea mays roots. The roots from Mg2+ -deficient plants also had a higher amount of peroxidase activity when compared to control roots.  相似文献   

13.
14.
Nitrogen (N) management is a promising agronomic strategy to minimize cadmium (Cd) contamination in crops. However, it is unclear how N affects Cd uptake by plants. Wild-type and iron uptake-inefficient tomato (Solanum lycopersicum) mutant (T3238fer) plants were grown in pH-buffered hydroponic culture to investigate the direct effect of N-form on Cd uptake. Wild-type plants fed NO?? accumulated more Cd than plants fed NH??. Iron uptake and LeIRT1 expression in roots were also greater in plants fed NO??. However, in mutant T3238fer which loses FER function, LeIRT1 expression in roots was almost completely terminated, and the difference between NO?? and NH?? treatments vanished. As a result, the N-form had no effect on Cd uptake in this mutant. Furthermore, suppression of LeIRT1 expression by NO synthesis inhibition with either tungstate or L-NAME, also substantially inhibited Cd uptake in roots, and the difference between N-form treatments was diminished. Considering all of these findings, it was concluded that the up-regulation of the Fe uptake system was responsible for NO??-facilitated Cd accumulation in plants.  相似文献   

15.
16.
17.
18.
19.
All members of the Monotropoideae (Ericaceae), including the species, Allotropa virgata and Pleuricospora fimbriolata, are mycoheterotrophs dependent on associated symbiotic fungi and autotrophic plants for their carbon needs. Although the fungal symbionts have been identified for A. virgata and P. fimbriolata, structural details of the fungal–root interactions are lacking. The objective of this study was, therefore, to determine the structural features of these plant root–fungus associations. Root systems of these two species did not develop dense clusters of mycorrhizal roots typical of some monotropoid species, but rather, the underground system was composed of elongated rhizomes with first- and second-order mycorrhizal adventitious roots. Both species developed mantle features typical of monotropoid mycorrhizas, although for A. virgata, mantle development was intermittent along the length of each root. Hartig net hyphae were restricted to the host epidermal cell layer, and fungal pegs formed either along the tangential walls (P. fimbriolata) or radial walls (A. virgata) of epidermal cells. Plant-derived wall ingrowths were associated with each fungal peg, and these resembled transfer cells found in other systems. Although the diffuse nature of the roots of these two plants differs from some members in the Monotropoideae, the structural features place them along with other members of the Monotropoideae in the “monotropoid” category of mycorrhizas.  相似文献   

20.
Bamboo is a silicon accumulating plant. In leaves, the major place of silicon (Si) deposition is the epidermis, with the highest concentration of Si in silica cells. In bamboo roots, the deposition of Si is found only in endodermal cell walls. The silicification of leaves and roots was examined in the economically important bamboo plant Phyllostachys heterocycla, using an environmental scanning electron microscope coupled with X-ray microanalysis, as well as gravimetric quantification. The content of Si on a dry weight basis measured by gravimetric quantification was 7.6% in leaves and 2.4% in roots, respectively. Moreover, quantification of EDX data showed high Si impregnation of the inner tangential endodermal walls. Si content in this part of the root endodermal cell walls was even higher than that in the outer leaf epidermal walls, where conspicuous deposition of Si often occurs in grass plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号