首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Somatostatin-14 was discovered in 1973 in the hypothalamus as a peptide inhibiting growth hormone release. Somatostatin interacts with five receptor subtypes (sst1−5) which are widely distributed in the brain with a distinct, but overlapping, expression pattern. During the last few years, the development of highly selective peptide agonists and antagonists provided new insight to characterize the role of somatostatin receptor subtypes in the pleiotropic actions of somatostatin. Recent evidence in rodents indicates that the activation of selective somatostatin receptor subtypes in the brain blunts stress-corticotropin-releasing factor (CRF) related ACTH release (sst2/5), sympathetic-adrenal activaton (sst5), stimulation of colonic motility (sst1), delayed gastric emptying (sst5), suppression of food intake (sst2) and the anxiogenic-like (sst2) response. These findings suggest that brain somatostatin signaling pathways may play an important role in dampening CRF-mediated endocrine, sympathetic, behavioral and visceral responses to stress.  相似文献   

2.
The neuropeptide somatostatin (SRIF) modulates normal and leukemia T cell proliferation. However, neither molecular isotypes of receptors nor mechanisms involved in these somatostatin actions have been elucidated as yet. Here we show by using RT-PCR approach that mitogen-activated leukemia T cells (Jurkat) express mRNA for a single somatostatin receptor, sst3. This mRNA is apparently translated into protein since specific somatostatin binding sites (KI1 = 78 ± 3 pM) were detected in semipurified plasma membrane preparations by using 125I-Tyr1-SRIF14 as a radioligand. Moreover, somatostatin inhibits adenylyl cyclase activity with similar efficiency (IC50 = 23 ± 4 pM) thus strongly suggesting a functional coupling of sst3 receptor to this transduction pathway. The involvement of sst3 receptor in immuno-modulatory actions of somatostatin was assessed by analysis of neuropeptide effects on IL-2 secretion and on proliferation of mitogen-activated Jurkat cells. Our data show that in the concentrations comprised between 10 pM and 10 nM, somatostatin potentiates IL-2 secretion. This effect is correlated with somatostatin-dependent increase of Jurkat cell proliferation since the EC50 concentrations for both actions were almost identical (EC50 = 22 ± 9 pM and EC50 = 12 ± 1 pM for IL-2 secretion and proliferation, respectively). Altogether, these data strongly suggest that in mitogen-activated Jurkat cells, somatostatin increases cell proliferation through the increase of IL-2 secretion via a functional sst3 receptor negatively coupled to the adenylyl cyclase pathway. J. Cell. Biochem. 68:62–73, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

3.
Somatostatin was discovered four decades ago as hypothalamic factor inhibiting growth hormone release. Subsequently, somatostatin was found to be widely distributed throughout the brain and to exert pleiotropic actions via interaction with five somatostatin receptors (sst1–5) that are also widely expressed throughout the brain. Interestingly, in contrast to the predominantly inhibitory actions of peripheral somatostatin, the activation of brain sst2 signaling by intracerebroventricular injection of stable somatostatin agonists potently stimulates food intake and independently, drinking behavior in rodents. The orexigenic response involves downstream orexin-1, neuropeptide Y1 and μ receptor signaling while the dipsogenic effect is mediated through the activation of the brain angiotensin 1 receptor. Brain sst2 activation is part of mechanisms underlying the stimulation of feeding and more prominently water intake in the dark phase and is able to counteract the anorexic response to visceral stressors.  相似文献   

4.
A backbone bridged and disulfide bridged bicyclic somatostatin analogue, compound 1 (PTR-3205), was designed and synthesized by solid-phase methodology. The binding of compound 1 to the five different somatostatin receptors, expressed in CHO or COS-7 cells, indicate a high degree of selectivity towards hsstr2. The three-dimensional structure of this compound has been determined in DMSO-d6 and in water by 1H NMR and by molecular dynamics simulations. Similar backbone conformations were observed in both solvents. We have established direct evidence that the backbone of this bicyclic somatostatin analogue assumes a ‘folded’ conformation in solution, where the lactam ring extends roughly in the plane of the β-turn. The pharmacophoric region Phe-(d)-Trp-Lys-Thr of compound 1 is in accord with that of both the Veber compound L-363,301 (Merck) and sandostatin. We believe that the enhanced selectivity towards the hsst2 receptor, in comparison with other analogues, is due to its large hydrophobic region, composed of the lactam ring and the Phe side chains at positions 1 and 8.  相似文献   

5.
Somatostatin analogs.   总被引:2,自引:0,他引:2  
Somatostatin is a hypothalamic peptide hormone that inhibits the secretion of growth hormone, glucagon, insulin, gastrin and secretin, and also plays a role in neural transmission. Because of its wide range of possible clinical applications hundreds of somatostatin analogs have been synthesized and bioassayed to date. This review gives a historical perspective, summarizing approximately 30 years of research on somatostatin. The main focus is on the structure-activity relationships and conformational studies of the last generation of somatostatin agonists and their selectivity for five somatostatin receptor subtypes. Achievements in the synthesis of nonpeptide somatostatin analogs, as well as the first somatostatin antagonists, are also discussed. Finally, the use of a cyclic somatostatin scaffold to design ligands for other G-protein-coupled receptors, such as opioid and melanocortin receptors, is mentioned.  相似文献   

6.
Opioids and somatostatin analogs have been implicated in the modulation of renal water handling, but whether their action is accomplished through central and/or peripheral mechanisms remains controversial. In different cell systems, on the other hand, opioids and somatostatin inhibit cell proliferation. In the present study, we have used an established cell line, derived from opossum kidney (OK) proximal tubules, in order to characterize opioid and somatostatin receptors and to investigate the action of opioids and somatostatin on tubular epithelial tissue. Our results show the presence of one class of opioid binding sites with kappa1 selectivity (KD 4.6 ± 0.9 nM, 57,250 sites/cell), whereas delta, mu, or other subtypes of the kappa site were absent. Somatostatin presents also a high affinity site on these cells (KD 24.5 nM, 330,000 sites/cell). No effect of either opioids or somatostatin on the activity of the Na+/Pi cotransporter was observed, indicating that these agents do not affect ion transport mechanisms. However, opioid agonists and somatostatin analogs decrease OK cell proliferation in a dose-dependent manner; in the same nanomolar concentration range, they displayed reversible specific binding for these agents. The addition of diprenorphine, a general opioid antagonist, reversed the effects of opioids, with the exception of morphine. Furthermore, morphine interacts with the somatostatin receptor in this cell line too, as was the case in the breast cancer T47D cell line. Our results indicate that in the proximal tubule opioids and somatostatin do not affect ion transport, but they might have a role in the modulation of renal cell proliferation either during ontogenesis or in kidney repair. © 1996 Wiley-Liss, Inc.  相似文献   

7.
Atrial natriuretic peptide (ANP) as well as its receptor, NPR-A, have been identified in gastric antral mucosa, suggesting that ANP may act in a paracrine fashion to regulate gastric secretion. In the present study, we have superfused antral mucosal segments obtained from rat stomach to examine the paracrine pathways linking ANP and somatostatin secretion in this region.ANP (0.1 pM to 0.1 microM) caused a concentration-dependent increase in somatostatin secretion (EC(50), 0.3 nM). The somatostatin response to ANP was unaffected by the axonal blocker tetrodotoxin but abolished by addition of the selective NPR-A antagonist, anantin. Anantin alone inhibited somatostatin secretion by 18+/-3% (P<0.005), implying that endogenous ANP, acting via the NPR-A receptor, stimulates somatostatin secretion. Somatostatin (1 pM to 1 microM) caused a concentration-dependent decrease in ANP secretion (EC(50), 0.7 nM) that was abolished by addition of the somatostatin subtype 2 receptor (sst2) antagonist, PRL2903. Neutralization of ambient somatostatin with somatostatin antibody (final dilution 1:200) increased basal ANP secretion by 70+/-8% (P<001), implying that endogenous somatostatin inhibits ANP secretion. We conclude that antral ANP and somatostatin secretion are linked by paracrine feedback pathways: endogenous ANP, acting via the NPR-A receptor, stimulates somatostatin secretion, and endogenous somatostatin, acting via the sst2 receptor, inhibits ANP secretion.  相似文献   

8.
A novel class of non-peptide somatostatin receptor ligands bearing the octahydrobenzo[g]quinoline (obeline) structural element has been identified. SAR studies have been performed that led to the discovery of derivatives with high affinity (pK(d) r sst(1) > or = 9) and selectivity (> or = 150-fold for h sst(1) over h sst(2)-h sst(5)) for somatostatin receptor subtype sst(1). In a functional assay, the compounds act as antagonists at human recombinant sst(1) receptors.  相似文献   

9.
In 1972, Brazeau et al. isolated somatostatin (somatotropin release-inhibiting factor, SRIF), a cyclic polypeptide with two biologically active isoforms (SRIF-14 and SRIF-28). This event prompted the successful quest for SRIF receptors. Then, nearly a quarter of a century later, it was announced that a neuropeptide, to be named cortistatin (CST), had been cloned, bearing strong resemblance to SRIF. Evidence of special CST receptors never emerged, however. CST rather competed with both SRIF isoforms for specific receptor binding. And binding to the known subtypes with affinities in the nanomolar range, it has therefore been acknowledged to be a third endogenous ligand at SRIF receptors.This review goes through mechanisms of signal transduction, pharmacology, and anatomical distribution of SRIF receptors. Structurally, SRIF receptors belong to the superfamily of G protein-coupled (GPC) receptors, sharing the characteristic seven-transmembrane-segment (STMS) topography. Years of intensive research have resulted in cloning of five receptor subtypes (sst1-sst5), one of which is represented by two splice variants (sst2A and sst2B). The individual subtypes, functionally coupled to the effectors of signal transduction, are differentially expressed throughout the mammalian organism, with corresponding differences in physiological impact. It is evident that receptor function, from a physiological point of view, cannot simply be reduced to the accumulated operations of individual receptors. Far from being isolated functional units, receptors co-operate. The total receptor apparatus of individual cell types is composed of different-ligand receptors (e.g. SRIF and non-SRIF receptors) and co-expressed receptor subtypes (e.g. sst2 and sst5 receptors) in characteristic proportions. In other words, levels of individual receptor subtypes are highly cell-specific and vary with the co-expression of different-ligand receptors. However, the question is how to quantify the relative contributions of individual receptor subtypes to the integration of transduced signals, ultimately the result of collective receptor activity. The generation of knock-out (KO) mice, intended as a means to define the contributions made by individual receptor subtypes, necessarily marks but an approximation. Furthermore, we must now take into account the stunning complexity of receptor co-operation indicated by the observation of receptor homo- and heterodimerisation, let alone oligomerisation. Theoretically, this phenomenon adds a novel series of functional megareceptors/super-receptors, with varied pharmacological profiles, to the catalogue of monomeric receptor subtypes isolated and cloned in the past. SRIF analogues include both peptides and non-peptides, receptor agonists and antagonists. Relatively long half lives, as compared to those of the endogenous ligands, have been paramount from the outset. Motivated by theoretical puzzles or the shortcomings of present-day diagnostics and therapy, investigators have also aimed to produce subtype-selective analogues. Several have become available.  相似文献   

10.
Evolutionary history of the somatostatin and somatostatin receptors   总被引:1,自引:0,他引:1  
Somatostatin and its receptors have a critical role in mammalian growth through their control pattern of secretion of growth hormone, but the evolutionary history of somatostatin and somatostatin receptors are ill defined. We used comparative whole genome analysis of Danio rerio, Carassius auratus, Xenopus tropicalis, Gallus gallus, Monodelphis domestica, Homo sapiens, Sus scrofa, Bos taurus, Mus musculus, Rattus norvegicus, Canis lupus familiaris, Ovis aries, Equus caballus, Pan troglodytes and Macaca mulatto to identify somatostatin and somatostatin receptors in each species. To date, we have identified a minimum of two genes of somatostatin and five somatostatin receptor genes in mammalian species with variable forms. We established a clear evolutionary history of the somatostatin system and traced the origin of the somatostatin system to 395 million years ago (MYA), identifying critical steps in their evolution.  相似文献   

11.
The physiological responses of somatostatin are mediated by five different G protein-coupled receptors. Although agonist-induced endocytosis of the various somatostatin receptor subtypes (sst(1)-sst(5)) has been studied in detail, little is known about their postendocytic trafficking. Here we show that somatostatin receptors profoundly differ in patterns of beta-arrestin mobilization and endosomal sorting. The beta-arrestin-dependent trafficking of the sst(2A) somatostatin receptor resembled that of a class B receptor in that upon receptor activation, beta-arrestin and the receptor formed stable complexes and internalized together into the same endocytic vesicles. This pattern was dependent on GRK2 (G protein-coupled receptor kinase 2)-mediated phosphorylation of a cluster of phosphate acceptor sites within the cytoplasmic tail of the sst(2A) receptor. Unlike other class B receptors, however, the sst(2A) receptor was rapidly resensitized and recycled to the plasma membrane. The beta-arrestin mobilization of the sst(3) and the sst(5) somatostatin receptors resembled that of a class A receptor in that upon receptor activation, beta-arrestin and the receptor formed relatively unstable complexes that dissociated at or near the plasma membrane. Consequently, beta-arrestin was excluded from sst(3)-containing vesicles. Unlike other class A receptors, a large proportion of sst(3) receptors was subject to ubiquitin-dependent lysosomal degradation and did not rapidly recycle to the plasma membrane. The sst(4) somatostatin receptor is unique in that it did not exhibit agonist-dependent receptor phosphorylation and beta-arrestin recruitment. Together, these findings may provide important clues about the regulation of receptor responsiveness during long-term administration of somatostatin analogs.  相似文献   

12.
The tetradecapeptide somatostatin (SRIF) has an inhibitory action on acid secretion in the stomach. It has been suggested that somatostatin may act directly on parietal cells as well as indirectly via histamine-producing cells. A family of high affinity membrane-bound receptors, which are termed sst1-sst5 receptors, mediates the physiological effects of somatostatin. On the basis of functional studies it has been suggested that somatostatin may mediate its actions in the stomach by activation of a somatostatin sst2 receptor type. Two splice variants of the rat sst2 receptor exist, sst2(a) and sst2(b), which differ in length and composition of their intracellular carboxy termini. To date, little information is available on the distribution of the somatostatin sst2(b) receptor in any peripheral tissue. Here we show for the first time the localisation of this receptor isoform in the rat oxyntic mucosa, where the receptor protein was found to be present in parietal cells. This is in contrast to sst2(a) receptor, which was localised to enterochromaffin-like cells and nerve fibres. The differential localisation of the receptor isoforms to two key cell types, parietal cells and enterochromaffin-like cells, may explain how somatostatin inhibits acid secretion by more than one mechanism.  相似文献   

13.
Somatostatin mediates inhibitory functions through five G protein–coupled somatostatin receptors (sst1–5). We used immunohistochemistry, immunofluorescence, and RT-PCR to determine the presence of somatostatin receptors sst1, sst2A, sst2B, sst3, sst4, and sst5 in normal and IgA nephropathy human kidney. All somatostatin receptors were detected in the thin tubules (distal convoluted tubules and loops of Henle) and thick tubules (proximal convoluted tubules) in the tissue sections from nephrectomy and biopsy samples. Immunopositive sst1 and sst4 staining was more condensed in the cytoplasm of tubular epithelial cells. In normal kidney tissue sections, podocytes and mesangial cells in the glomeruli stained for sst1, sst2B, sst4 and sst5, and stained weakly for sst3. In IgA kidney tissue, the expression of somatostatin receptors was significantly increased with particular immmunopositive staining for sst1, sst2B, sst4, and sst5 within glomeruli. In the epithelial cells, the staining for sst2B and sst4 in proximal tubules and sst1, sst2B, and sst5 in distal tubules was increased. The mRNA expression of sst1–5 was also detected by RT-PCR. Somatostatin and all five receptor subtypes were ubiquitously distributed in normal kidney and IgA nephropathy. The increased expression of somatostatin receptors in IgA nephropathy kidney might be the potential pathogenesis of inflammatory renal disease. (J Histochem Cytochem 56:733–743, 2008)  相似文献   

14.
Somatostatin receptor gene expression in neuroblastoma   总被引:2,自引:0,他引:2  
Somatostatin receptor expression is a favorable prognostic factor in human neuroblastoma. Somatostatin receptors have been demonstrated in vitro by pharmacologic analysis of tumor tissue and in vivo by diagnostic radioreceptor scintigraphy. However, which receptor subtypes (sst(1), sst(2), sst(3), sst(4), and sst(5)) are expressed in these tumors has not yet been delineated. We used RT-PCR to analyze expression of the five somatostatin receptor genes in 32 neuroblastoma tumor specimens. All 32 tumor specimens expressed mRNA for c-abl and sst(1); sst(2) mRNA was detected in 27/32 samples and somatostatin mRNA was detected in 30/32 tumor specimens. The remaining receptor subtypes, sst(3), sst(4), and sst(5) were variably expressed. Receptor protein for sst(1) and sst(2) was visualized in tumor neuroblasts as well as in endothelial cells of tumor vessels using immunostaining with specific anti-receptor antibodies. The effect of high expression of somatostatin receptors on cell proliferation was examined in SKNSH neuroblastoma cells transfected with sst(1) and sst(2). SS(14) binding to wild-type SKNSH cells was undetectable; but the native peptide bound with high affinity to the SKNSH/sst(1) and SKNSH/sst(2) neuroblastoma cell lines. Pharmacologic analysis of binding with two long-acting analogues, CH275 and octreotide, confirmed selective expression of sst(1) and sst(2) in stably transfected SKNSH cells. Formation of neuroblastoma xenograft tumors in nude mice was significantly delayed for both SKNSH/sst(1) (P<0.001) and SKNSH/sst(2) (P<0.05) cells compared to wild-type SKNSH. We conclude that: (1) Somatostatin receptors, sst(1) and sst(2), are expressed in the majority of neuroblastomas at diagnosis; and (2) upregulation of functional sst(1) or sst(2) in neuroblastoma cell lines suppresses tumorigenicity in a xenograft model. These observations suggest that somatostatin receptors may be a useful therapeutic target in neuroblastoma.  相似文献   

15.
The newly developed multireceptor somatostatin analogs pasireotide (SOM230), octreotide and somatoprim (DG3173) have primarily been characterized according to their binding profiles. However, their ability to activate individual somatostatin receptor subtypes (sst) has not been directly assessed so far. Here, we transplanted the carboxyl-terminal phosphorylation motif of the sst(2) receptor to other somatostatin receptors and assessed receptor activation using a set of three phosphosite-specific antibodies. Our comparative analysis revealed unexpected efficacy profiles for pasireotide, octreotide and somatoprim. Pasireotide was able to activate sst(3) and sst(5) receptors but was only a partial agonist at the sst(2) receptor. Octreotide exhibited potent agonistic properties at the sst(2) receptor but produced very little sst(5) receptor activation. Like octreotide, somatoprim was a full agonist at the sst(2) receptor. Unlike octreotide, somatoprim was also a potent agonist at the sst(5) receptor. Together, we propose the application of a phosphorylation probe for direct assessment of G protein-coupled receptor activation and demonstrate its utility in the pharmacological characterization of novel somatostatin analogs.  相似文献   

16.
Somatostatin receptors in normal and tumoral tissue   总被引:3,自引:0,他引:3  
Somatostatin receptors have been visualized with autoradiography and characterised biochemically in various somatostatin target tissues, such as brain, pituitary, pancreas and gastrointestinal tract, where they are likely to mediate the somatostatin actions. With the same methods, somatostatin receptors have been detected also in tumors originating from somatostatin target tissues: high receptor incidence is found in GH-producing pituitary adenomas as well as in some hormone-producing gastrointestinal tumors. These tumors are often highly responsive to somatostatin analogs in vivo. Among brain tumors, meningiomas usually contain a high density of receptors, suggesting a novel function for somatostatin in the human meninges. Among other human tumors tested, prostate, ovarian and endometrial carcinomas were free of receptors whereas 3 out of 39 mammary tumors contained somatostatin receptors.  相似文献   

17.
 Interrelationships between dopaminergic afferents and somatostatinergic neurons of the rat central amygdaloid nucleus were studied using tyrosine hydroxy-lase/somatostatin double immunolabeling for light and electron microscopy. Additionally, morphological features of somatostatin neurons in different subnuclei of the central nucleus were studied, and the results were complemented by codistribution studies of somatostatin and D1 and D2 dopamine receptor mRNA expression. Dense axonal immunolabeling for tyrosine hydroxylase was colocalized with somatostatin-immunoreactive or somatostatin mRNA-reactive neurons in the medial and the central lateral part of the central nucleus. The number of somatostatinergic neurons detected was higher using in situ hybridization than using immunolabeling. Somatostatin-immunoreactive neurons of the medial central nucleus possessed deeply indented nuclei, and immunoreaction product was confined to the Golgi apparatus and its vicinity. On the other hand, those in the central lateral subnucleus possessed nuclei without indentations and showed diffuse staining of the cytoplasm and/or in large vesicles. Double labeling showed that in the central lateral central nucleus, somatostatin-immunoreactive neurons were contacted by tyrosine hydroxylase-immunoreactive terminals, and on the electron microscopic level synaptic contacts between differently labeled structures were observed. D1 and D2 receptor mRNA-reactive neurons were differentially distributed in central nucleus subnuclei. D1 receptor mRNA-expressing neurons were found only in the medial subnucleus, while D2 receptor mRNA was expressed by a number of neurons in the lateral central and a few in the medial one. Thus, the study proves that somatostatin-immunoreactive neurons of the central lateral central nucleus are directly innervated by dopaminergic afferents and may express the D2 dopamine receptor. Accepted: 2 July 1996  相似文献   

18.
The neuropeptide somatostatin has been suggested to play an important role during neuronal development in addition to its established modulatory impact on neuroendocrine, motor and cognitive functions in adults. Although six somatostatin G protein-coupled receptors have been discovered, little is known about their distribution and function in the developing mammalian brain. In this study, we have first characterized the developmental expression of the somatostatin receptor sst2A, the subtype found most prominently in the adult rat and human nervous system. In the rat, the sst2A receptor expression appears as early as E12 and is restricted to post-mitotic neuronal populations leaving the ventricular zone. From E12 on, migrating neuronal populations immunopositive for the receptor were observed in numerous developing regions including the cerebral cortex, hippocampus and ganglionic eminences. Intense but transient immunoreactive signals were detected in the deep part of the external granular layer of the cerebellum, the rostral migratory stream and in tyrosine hydroxylase- and serotonin- positive neurons and axons. Activation of the sst2A receptor in vitro in rat cerebellar microexplants and primary hippocampal neurons revealed stimulatory effects on neuronal migration and axonal growth, respectively. In the human cortex, receptor immunoreactivity was located in the preplate at early development stages (8 gestational weeks) and was enriched to the outer part of the germinal zone at later stages. In the cerebellum, the deep part of the external granular layer was strongly immunoreactive at 19 gestational weeks, similar to the finding in rodents. In addition, migrating granule cells in the internal granular layer were also receptor-positive. Together, theses results strongly suggest that the somatostatin sst2A receptor participates in the development and maturation of specific neuronal populations during rat and human brain ontogenesis.  相似文献   

19.
皮质抑素(cortistatin, CST)是一种新型神经内分泌肽,因其在皮质中大量表达并抑制皮质的功能而得名,属于生长抑素基因家族新成员,与生长抑素(somatostatin)具有结构同源性.CST能与生长抑素受体、生长素释放肽受体、Mas相关基因2受体结合,发挥多种生物学效应,如诱导慢波睡眠、参与炎症过程、调节神经内分泌.研究表明,就内分泌系统而言,CST是生长抑素的一种天然替代物.本文重点从细胞、整体水平对CST在内分泌系统中的作用做一简介.  相似文献   

20.
We screened the Berkeley "Drosophila Genome Project" database with "electronic probes" corresponding to conserved amino acid sequences from the five known rat somatostatin receptors. This yielded alignment with a Drosophila genomic clone that contained a DNA sequence coding for a protein, having amino acid sequence identities with the rat galanin receptors. Using PCR with Drosophila cDNA as a template, and oligonucleotide probes coding for the exons of the presumed Drosophila gene, we were able to clone the cDNA for this receptor. The Drosophila receptor has most amino acid sequence identity with the three mammalian galanin receptors (37% identity with the rat galanin receptor type-1, 32% identity with type-2, and 29% identity with type-3). Less sequence identity exists with the mammalian opioid/nociceptin-orphanin FQ receptors (26% identity with the rat micro opioid receptor), and mammalian somatostatin receptors (25% identity with the rat somatostatin receptor type-2). The novel Drosophila receptor gene contains ten introns and eleven exons and is located at the distal end of the X chromosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号