首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During the purification of recombinant Bacillus thermoproteolyticus ferredoxin (BtFd) from Escherichia coli, we have noted that some Fe-S proteins were produced in relatively small amounts compared to the originally identified BtFd carrying a [4Fe-4S] cluster. These variants could be purified into three Fe-S protein components (designated as V-I, V-II, and V-III) by standard chromatography procedures. UV-vis and EPR spectroscopic analyses indicated that each of these variants accommodates a [3Fe-4S] cluster. From mass spectrometric and protein sequence analyses together with native and SDS gel electrophoresis, we established that V-I and V-II contain the polypeptide of BtFd associated with acyl carrier protein (ACP) and with coenzyme A (CoA), respectively, and that V-III is a BtFd dimer linked by a disulfide bond. The crystal structure of the BtFd-CoA complex (V-II) determined at 1.6 A resolution revealed that each of the four complexes in the crystallographic asymmetric unit possesses a [3Fe-4S] cluster that is coordinated by Cys(11), Cys(17), and Cys(61). The polypeptide chain of each complex is superimposable onto that of the original [4Fe-4S] BtFd except for the segment containing Cys(14), the fourth ligand to the [4Fe-4S] cluster of BtFd. In the variant molecules, the side chain of Cys(14) is rotated away to the molecular surface, forming a disulfide bond with the terminal sulfhydryl group of CoA. This covalent modification may have occurred in vivo, thereby preventing the assembly of the [4Fe-4S] cluster as observed previously for Desulfovibrio gigas ferredoxin. Possibilities concerning how the variant molecules are formed in the cell are discussed.  相似文献   

2.
The regulatory role of GTP-binding proteins (G-proteins) in insulin receptor function was investigated using isolated insulin receptors and plasma membranes from rat adipocytes. Treatment of isolated insulin receptors with 1 mM-guanosine 5'-[gamma-thio]triphosphate (GTP[S]) inhibited insulin-stimulated phosphorylation of the beta-subunit, histone Hf2b and poly(GluNa4,Tyr1) by 22%, 65% and 65% respectively. Phosphorylation of calmodulin by the insulin receptor kinase was also inhibited by 1 mM-GTP[S] both in the absence (by 88%) and in the presence (by 81%) of insulin. In the absence of insulin, 1 mM-GTP had the same effect on calmodulin phosphorylation as 1 mM-GTP[S]. However, when insulin was present, GTP was less effective than GTP[S] (41% versus 81% inhibition). Concentrations of GTP[S] greater than 250 microM are necessary to inhibit phosphorylation. Although these concentrations are relatively high, the effect of GTP[S] is not due to competition with [32P]ATP for the insulin receptor kinase since (1) other nucleotide triphosphates did not inhibit phosphorylation as much as did GTP[S] (or GTP) and (2) the Vmax of the ATP-dependent kinase reaction was decreased in the presence of GTP[S]. GTP[S] (1 mM) also inhibited insulin binding to isolated receptors and plasma membranes, by 80% and 50% respectively. Finally, an antibody raised to a peptide sequence common to the alpha-subunits of G-proteins Gs, Gi, Go and transducin detected G-proteins in plasma membranes but failed to detect them in the insulin receptor preparation. These results indicate that GTP inhibits insulin receptor function, but does so through a mechanism that does not require a conventional GTP-binding protein.  相似文献   

3.
Amino acid sequence of [2Fe-2S] ferredoxin from Clostridium pasteurianum   总被引:4,自引:0,他引:4  
The complete amino acid sequence of the [2Fe-2S] ferredoxin from the saccharolytic anaerobe Clostridium pasteurianum has been determined by automated Edman degradation of the whole protein and of peptides obtained by tryptic and by staphylococcal protease digestion. The polypeptide chain consists of 102 amino acids, including 5 cysteine residues in positions 11, 14, 24, 56, and 60. The sequence has been analyzed for hydrophilicity and for secondary structure predictions. In its native state the protein is a dimer, each subunit containing one [2Fe-2S] cluster, and it has a molecular weight of 23,174, including the four iron and inorganic sulfur atoms. The extinction coefficient of the native protein is 19,400 M-1 cm-1 at 463 nm. The positions of the cysteine residues, four of which are most probably the ligands of the [2Fe-2S] cluster, on the polypeptide chain of this protein are very different from those found in other [2Fe-2S] proteins, and in other ferredoxins in general. In addition, whole sequence comparisons of the [2Fe-2S] ferredoxin from C. pasteurianum with a number of other ferredoxins did not reveal any significant homologies. The likely occurrence of several phylogenetically unrelated ferredoxin families is discussed in the light of these observations.  相似文献   

4.
The crystal structure of 2-methylbenz[a]anthracene (2-MBA), the least carcinogenically active of the monomethylbenz[a]anthracenes, has been determined by application of direct methods to single-crystal X-ray diffractometric data and refined by least squares to R = 0.033 (Rw = 0.035). Deviations of the carbon atoms from the mean molecular plane are much smaller than in the rather more active 1-MBA; in 2-MBA, the benzo-ring A is inclined at about 2 degrees to each of the three rings in the anthracene moiety and even the methyl carbon atom is displaced by only 0.07 A from the ring-carbon atom plane of 2-MBA (and by 0.01 A from the ring-A plane). As in other MBA, the shortest C-C bond in this accurately determined structure is at the K-region (C(5)-C(6) = 1.330(3) A) but three other bonds are short; C(8)-C(9) = 1.347(4), C(10)-C(11) = 1.353(3) and the M-region bond C(3)-C(4) = 1.359(4) A (0.003 A longer if corrected for rigid-body librations). The 2-methyl group appears to take up two orientations with one trio of hydrogen positions more favored than the other.  相似文献   

5.
 The [2Fe-2S] protein from Azotobacter vinelandii that was previously known as iron-sulfur protein I, or Shethna protein I, has been shown to be encoded by a gene belonging to the major nif gene cluster. Overexpression of this gene in Escherichia coli yielded a dimeric protein of which each subunit comprises 106 residues and contains one [2Fe-2S] cluster. The sequence of this protein is very similar to that of the [2Fe-2S] ferredoxin from Clostridium pasteurianum (2FeCpFd), and the four cysteine ligands of the [2Fe-2S] cluster occur in the same positions. The A. vinelandii protein differs from the C. pasteurianum one by the absence of the N-terminal methionine, the presence of a five-residue C-terminal extension, and a lesser number of acidic and polar residues. The UV-visible absorption and EPR spectra, as well as the redox potentials of the two proteins, are nearly identical. These data show that the A. vinelandii FeS protein I, which is therefore proposed to be designated 2FeAvFdI, is the counterpart of the [2Fe-2S] ferredoxin from C. pasteurianum. The occurrence of the 2FeAvFdI-encoding gene in the nif gene cluster, together with the previous demonstration of a specific interaction between the 2FeCpFd and the nitrogenase MoFe protein, suggest that both proteins might be involved in nitrogen fixation, with possibly similar roles. Received: 21 December 1998 / Accepted: 1 March 1999  相似文献   

6.
The crystal structure of 6-methylbenz[a]anthracene (6-MBA), a more potent carcinogen than the other K-region monomethyl-substituted benz[a]anthracene (5-MBA), has been determined by application of direct methods to single-crystal X-ray diffractometric data and refined by least squares to R = 0.047 (Rw = 0.053). Deviations of the carbon atoms from planarity are very small with even the methyl carbon displaced by only 0.05 A from the mean molecular plane. The benzo-ring A is inclined at only about 1 1/2 degrees to each of the three rings in the anthracene moiety, i.e. 6-MBA is one of the most nearly planar benz[a]anthracenes. The K-region bond C(5)-C(6) = 1.328(6) A and two other short bonds are C(8)-C(9) = 1.341(7) and C(10)-C(11) = 1.361(7) A in the anthracene D ring.  相似文献   

7.
A 21 amino acid peptide containing the prepropendothelin sequence from amino acids 110 to 130 and two intrachain disulfide bonds was synthesized and tested for biological activity in the following endothelin assays: 1.) a competition binding assay using [125I]ET-1 and dog heart membranes, 2.) three RIA's using 125I-ET-1, -2 and -3 and the respective anti-ET rabbit antisera; and 3.) a contractile activity bioassay using hamster aortic rings. The synthetic peptide which has been referred to as the "endothelin-like" peptide occurs 36 amino acids C-terminal to endothelin in the prepro-protein sequence. It contains only 40% sequence homology to the three endothelin isoforms, but has the same sequence and cyclization pattern of cysteines at positions 1, 3, 11 and 15. Despite the overall similarity in secondary structure to the three isoforms of endothelin and sarafotoxin S6b, preproendothelin [110-130] had no activity in any of the assays when tested at concentrations of 10(-10)M to 10(-5)M.  相似文献   

8.
9.
Resonance Raman spectroscopy has been used to investigate the Fe-S stretching modes of the [4Fe-4S]2+ cluster in the oxidized iron protein of Clostridium pasteurianum nitrogenase. The results are consistent with a cubane [4Fe-4S] cluster having effective Td symmetry with cysteinyl coordination for each iron. In accord with previous optical and EPR studies [(1984) Biochemistry 23, 2118-2122], treatment with the iron chelator alpha, alpha'-dipyridyl in the presence of MgATP is shown to effect cluster conversion to a [2Fe-2S]2+ cluster. Resonance Raman data also indicate that partial conversion to a [2Fe-2S]2+ cluster is induced by thionine-oxidation in the presence of MgATP in the absence of an iron chelator. This result suggests new explanations for the dramatic change in the CD spectrum that accompanies MgATP-binding to the oxidized Fe protein and the anomalous resonance Raman spectra of thionine-oxidized Clostridium pasteurianum bidirectional hydrogenase.  相似文献   

10.
Incubation of [35S]methionine and [35S]cysteine with bovine albumin, globulin, catalase, hemoglobin, or human globulin resulted in incorporation of the 35S label into each of these proteins. Trichloroacetic acid (TCA) precipitation revealed that the percentage of label incorporated ranged from 1 to 15%. The 35S labeling was resistant to dissociation by reducing SDS-PAGE, prolonged dialysis against 4 M urea, heating, TCA precipitation, and dilution by gel filtration. The labeling effect was more efficient with [35S]cysteine than [35S]methionine. Incubation of 35S label with proteins differing in methionine and cysteine content revealed no requirement for sulfur-containing amino acids in the target protein. Protein carboxymethylation reduced but did not prevent 35S label incorporation. Amino acid analysis of labeled proteins revealed that the radioactive label was not consistently associated with an individual amino acid. Differences in the ability of various proteins to spontaneously label with these amino acids suggest caution in the interpretation of metabolic labeling experiments and the necessity for inclusion of additional controls. Alternatively, our experience indicates a potentially useful method for labeling proteins in the absence of cells.  相似文献   

11.
The possibility that clusters containing the Fe4S4 core unit found in a wide variety of proteins can effect reductive transformations of Fe-S enzyme substrates has been investigated using the reduced synthetic clusters [Fe4S4(SPh)4]3- and acetylene, an alternate nitrogenase substrate. The system [Fe4S4(SPh)4]3-/acetic acid/acetic anhydride in N-methylpyrollidinone at approximately 25 degrees was found to reduce acetylene homogeneously to ethylene, and in the presence of a deuterium source to afford as the principal stereochemical product cis-1,2-C2H2D2. No appreciable reduction was found using the oxidized cluster [Fe4S4(SPh)4]2-. The system is not catalytic and departs from the strict stoichiometry of the reaction, 2[Fe4S4(SPh)4]3- + C2H2 + 2H+ leads to 2 [Fe4S4(SPh)4]2- + C2H4, primarily because of a competing cluster oxidation reaction which could not be eliminated. Based on this reaction ca. 60% conversion of acetylene to ethylene was achieved. A reaction sequence based on absorption and 1H nmr spectral observations and product stereo-chemistry is suggested. The results demonstrate that biologically related, reduced Fe4S4 clusters can effect reduction of at least one Fe-S enzyme substrate, and raise the general possibility of substrate transformation with such clusters as reaction sites in biological systems.  相似文献   

12.
Structures of mitochondrial bc1 complex have been reported based on four different crystal forms by three different groups. In these structures, the extrinsic domain of the Rieske [2Fe-2S] protein, surprisingly, appeared at three different positions: the "c1" position, where the [2Fe-2S] cluster exists in close proximity to the heme c1; the "b" position, where the [2Fe-2S] cluster exist in close proximity to the cytochrome b; and the "intermediate" position where the [2Fe-2S] cluster exists in-between "c1" and "b" positions. The conformational changes between these three positions can be explained by a combination of two rotations; (1) a rotation of the entire extrinsic domain and (2) a relative rotation between the cluster-binding fold and the base fold within the extrinsic domain. The hydroquinone oxidation and the electron bifurcation mechanism at the Q(P) binding pocket of the bc1 complex is well explained using these conformational changes of the Rieske [2Fe-2S] protein.  相似文献   

13.
Biotin synthase (BioB) converts dethiobiotin into biotin by inserting a sulfur atom between C6 and C9 of dethiobiotin in an S-adenosylmethionine (SAM)-dependent reaction. The as-purified recombinant BioB from Escherichia coli is a homodimeric molecule containing one [2Fe-2S](2+) cluster per monomer. It is inactive in vitro without the addition of exogenous Fe. Anaerobic reconstitution of the as-purified [2Fe-2S]-containing BioB with Fe(2+) and S(2)(-) produces a form of BioB that contains approximately one [2Fe-2S](2+) and one [4Fe-4S](2+) cluster per monomer ([2Fe-2S]/[4Fe-4S] BioB). In the absence of added Fe, the [2Fe-2S]/[4Fe-4S] BioB is active and can produce up to approximately 0.7 equiv of biotin per monomer. To better define the roles of the Fe-S clusters in the BioB reaction, M?ssbauer and electron paramagnetic resonance (EPR) spectroscopy have been used to monitor the states of the Fe-S clusters during the conversion of dethiobiotin to biotin. The results show that the [4Fe-4S](2+) cluster is stable during the reaction and present in the SAM-bound form, supporting the current consensus that the functional role of the [4Fe-4S] cluster is to bind SAM and facilitate the reductive cleavage of SAM to generate the catalytically essential 5'-deoxyadenosyl radical. The results also demonstrate that approximately (2)/(3) of the [2Fe-2S] clusters are degraded by the end of the turnover experiment (24 h at 25 degrees C). A transient species with spectroscopic properties consistent with a [2Fe-2S](+) cluster is observed during turnover, suggesting that the degradation of the [2Fe-2S](2+) cluster is initiated by reduction of the cluster. This observed degradation of the [2Fe-2S] cluster during biotin formation is consistent with the proposed sacrificial S-donating function of the [2Fe-2S] cluster put forth by Jarrett and co-workers (Ugulava et al. (2001) Biochemistry 40, 8352-8358). Interestingly, degradation of the [2Fe-2S](2+) cluster was found not to parallel biotin formation. The initial decay rate of the [2Fe-2S](2+) cluster is about 1 order of magnitude faster than the initial formation rate of biotin, indicating that if the [2Fe-2S] cluster is the immediate S donor for biotin synthesis, insertion of S into dethiobiotin would not be the rate-limiting step. Alternatively, the [2Fe-2S] cluster may not be the immediate S donor. Instead, degradation of the [2Fe-2S] cluster may generate a protein-bound polysulfide or persulfide that serves as the immediate S donor for biotin production.  相似文献   

14.
Li Z  Mao H  Kim HY  Tamura PJ  Harris CM  Harris TM  Stone MP 《Biochemistry》1999,38(10):2969-2981
The solution structure of the (-)-(1R,2S,3R,4S)-N6-[1-(1,2,3, 4-tetrahydroxy-benz[a]anthracenyl)]-2'-deoxyadenosyl adduct at X6 of 5'-d(CGGACXAGAAG)-3'.5'-d(CTTCTTGTCCG)-3', incorporating codons 60, 61(italic), and 62 of the human N-ras protooncogene, was determined. This adduct results from the trans opening of 1S,2R,3R,4S-1, 2-epoxy-1,2,3,4-tetrahydro-benz[a]anthracenyl-3,4-diol by the exocyclic N6 of adenine. Molecular dynamics simulations were restrained by 509 NOEs from 1H NMR. The precision of the refined structures was monitored by pairwise root-mean-square deviations which were <1.2 A; accuracy was measured by complete relaxation matrix calculations, which yielded a sixth root R factor of 9.1 x 10(-)2 at 250 ms. The refined structure was a right-handed duplex, in which the benz[a]anthracene moiety intercalated from the major groove between C5.G18 and R,S,R,SA6.T17. In this orientation, the saturated ring of BA was oriented in the major groove of the duplex, with the aromatic rings inserted into the duplex such that the terminal ring of BA threaded the duplex and faced toward the minor groove direction. The duplex suffered localized distortion at and immediately adjacent to the adduct site, evidenced by the increased rise of 8.8 A as compared to the value of 3.5 A normally observed for B-DNA between base pairs C5.G18 and R,S,R,SA6.T17. These two base pairs also buckled in opposite directions away from the intercalated BA moiety. The refined structure was similar to the (-)-(7S,8R,9S,10R)-N6-[10-(7,8,9, 10)-tetrahydrobenzo[a]pyrenyl)]-2'-deoxyadenosyl adduct of corresponding stereochemistry at X6 of the same oligodeoxynucleotide [Zegar, I. S., Kim, S. J., Johansen, T. N., Horton, P. J., Harris, C. M., Harris, T. M., and Stone, M. P. (1996) Biochemistry 35, 6212-6224]. Both adducts intercalated toward the 5'-direction from the site of adduction. The similarities in solution structures were reflected in similar biological responses, when repair-deficient AB2480 Escherichia coli were transformed with M13mp7L2 DNA site-specifically modified with these two adducts.  相似文献   

15.
Ferrochelatase (protoheme ferrolyase, EC 4.99.1.1) catalyzes the terminal step in the heme biosynthetic pathway, the insertion of ferrous iron into protoporphyrin IX to form protoheme IX. Previously we have demonstrated that the mammalian enzyme is associated with the inner surface of the inner mitochondrial membrane and contains a nitric oxide sensitive [2Fe-2S] cluster that is coordinated by four Cys residues whose spacing in the primary sequence is unique to animal ferrochelatase. We report here the characterization and crystallization of recombinant human ferrochelatase with an intact [2Fe-2S] cluster. Gel filtration chromatography and dynamic light scattering measurements revealed that the purified recombinant human ferrochelatase in detergent solution is a homodimer. EPR redox titrations of the enzyme yield a midpoint potential of -453+/-10 mV for the [2Fe-2S] cluster. The form of the protein that was crystallized has a single Arg to Leu substitution. This mutation has no detectable effect on enzyme activity but is critical for crystallization. The crystals belong to the space group P2(1)2(1)2(1) and have unit cell constants of a=93.5 A, b=87.7 A, and c=110.2 A. There are two molecules in the asymmetric unit and the crystals diffract to better than 2.0 A resolution. The Fe to Fe distance of the [2Fe-2S] cluster is calculated to be 2.7 A based upon the Bijvoet difference Patterson map.  相似文献   

16.
The chemical sequence of the [2Fe-2S] ferredoxin from the cyanobacterium AnabaenaPCC7119 (Fd7119) and its high-resolution X-ray structures in the oxidized and reduced states have been determined. The Fd7119 sequence is identical to that of the ferredoxin from the PCC7120 strain (Fd7120). X-ray diffraction data were collected at 100 K with an oxidized trigonal Fd7119 crystal, at 1.3 A resolution, and with an orthorhombic crystal, previously reduced with dithionite and flash frozen under anaerobic conditions, at 1.17 A resolution. The two molecular models were determined by molecular replacement with the [2Fe-2S] ferredoxin from the strain PCC7120 (Rypniewski, W. R., Breiter, D. R., Benning, M. M., Wesenberg, G., Oh, B.-H., Markley, J. L., Rayment, I., and Holden, H. M. (1991) Biochemistry 30, 4126-4131.) The final R-factors are 0. 140 (for the reduced crystal) and 0.138 (for the oxidized crystal). The [2Fe-2S] cluster appears as a significantly distorted lozenge in the reduced and oxidized redox states. The major conformational difference between the two redox forms concerns the peptide bond linking Cys46 and Ser47 which points its carbonyl oxygen away from the [2Fe-2S] cluster ("CO out") in the reduced molecule and toward it ("CO in") in the oxidized one. The "CO out" conformation could be the signature of the reduction of the iron atom Fe1, which is close to the molecular surface. Superposition of the three crystallographically independent molecules shows that the putative recognition site with the physiological partner (FNR) involves charged, hydrophobic residues and invariant water molecules.  相似文献   

17.
Knowing the manner of protein-protein interactions is vital for understanding biological events. The plant-type [2Fe-2S] ferredoxin (Fd), a well-known small iron-sulfur protein with low redox potential, partitions electrons to a variety of Fd-dependent enzymes via specific protein-protein interactions. Here we have refined the crystal structure of a recombinant plant-type Fd I from the blue green alga Aphanothece sacrum (AsFd-I) at 1.46 Å resolution on the basis of the synchrotron radiation data. Incorporating the revised amino-acid sequence, our analysis corrects the 3D structure previously reported; we identified the short α-helix (67-71) near the active center, which is conserved in other plant-type [2Fe-2S] Fds. Although the 3D structures of the four molecules in the asymmetric unit are similar to each other, detailed comparison of the four structures revealed the segments whose conformations are variable. Structural comparison between the Fds from different sources showed that the distribution of the variable segments in AsFd-I is highly conserved in other Fds, suggesting the presence of intrinsically flexible regions in the plant-type [2Fe-2S] Fd. A few structures of the complexes with Fd-dependent enzymes clearly demonstrate that the protein-protein interactions are achieved through these variable regions in Fd. The results described here will provide a guide for interpreting the biochemical and mutational studies that aim at the manner of interactions with Fd-dependent enzymes.  相似文献   

18.
The ability of a metal-coordinated pyrazole to engage in hydrogen bonding has been explored by synthesis of the title complex, bis[3-([thiomethyl]methyl)pyrazole]copper(II) perchlorate (3). The coordination in 3 can be described as pseudo-octahedral, with two relatively tightly-bound 3-[(thiomethyl)methyl]pyrazole ligands occupying the equatorial plane, forming a [CuN(2)S(2)](2+) unit with the S donors mutually trans to each other. The axial positions are each filled by a weakly bound perchlorate counterion, one oxygen of which forms a hydrogen bond with the pyrazole N-H moiety on an adjacent [CuN(2)S(2)](2+) unit.  相似文献   

19.
Biotin synthase (BioB) catalyses the final step in the biosynthesis of biotin. Aerobically purified biotin synthase contains one [2Fe-2S]2+ cluster per monomer. However, active BioB contains in addition a [4Fe-4S]2+ cluster which can be formed either by reconstitution with iron and sulfide, or on reduction with sodium dithionite. Here, we use EPR spectroscopy to show that mutations in the conserved YNHNLD sequence of Escherichia coli BioB affect the formation and stability of the [4Fe-4S]1+ cluster on reduction with dithionite and report the observation of a new [2Fe-2S]1+ cluster. These results serve to illustrate the dynamic nature of iron-sulfur clusters in biotin synthase and the role played by the protein in cluster interconversion.  相似文献   

20.
Ionic complexes, [Q][InIII(dmit)2] (7), have been obtained from reactions of InCl3, Na2(dmit) and [Q]Br [Q=NEt4 and NBu4: H2(dmit)=4,5-dimercapto-1,3-dithiole-2-thione]. As established by X-ray crystallography, using synchrotron radiation at 120 K, (7: Q=NBu4) is an ionic compound, with the cations well separated from the anions. The anions are in the form of chains of edge sharing octahedra in which distinct six coordinate In atoms are linked by bridging thiolato-S leading to the formation of In2S2 rings. For each dmit ligand, one thiolato S atom acts as a monodentate centre and the other as a μ2-bridge. The In-S bond lengths fall into three groupings: 2.5301(17)-2.5400(17) [monodentate S], 2.5905(17)-2.6171(17) and 2.7236(17)-2.7589(17) Å [the latter two, bridging S].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号