首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The influence of various culture parameters on infection and replication of recombinant vaccinia virus in HeLa cells was examined during various phases of viral replication. A modified form of the model of Valentine and Allison (Biochim. Biophys. Acta 1960, 40, 393-399) model was used to predict successfully the viral adsorption rates in cell suspensions. An experimentally determined aggregation factor, epsilon, was included in the model to account for deviations of the observed adsorption rates from those predicted by the earlier model. It was also shown that the ionic strength, ionic species, and serum proteins present in the medium significantly altered the adsorption kinetics of the virus. The lysosomotropic base chloroquine was found to enhance viral infection more than 2-fold during the penetration step of viral infection. It was also demonstrated that cells infected during the exponential growth phase gave higher viral yields than those infected during the lag or stationary growth phases and the initial viral MOI did not significantly alter viral yields. Finally, it was demonstrated that viral infection of HeLa cells grown in 4-L bioreactor batch cultures resulted in increased death and glucose uptake rates and significantly lower growth rates.  相似文献   

3.
Gamma interferon (IFN-gamma)-induced nitric oxide synthase (iNOS) and nitric oxide (NO) production in the murine macrophage-like RAW 264.7 cells were previously shown to inhibit the replication of the poxviruses vaccinia virus (VV) and ectromelia virus and herpes simplex virus type 1. In the current study, we performed biochemical analyses to determine the stage in the viral life cycle blocked by IFN-gamma-induced NO. Antibodies specific for temporally expressed viral proteins, a VV-specific DNA probe, and transmission electron microscopy were used to show that the cytokine-induced NO inhibited late protein synthesis, DNA replication, and virus particle formation but not expression of the early proteins analyzed. Essentially similar results were obtained with hydroxyurea and cytosine arabinoside, inhibitors of DNA replication. Enzymatically active iNOS was detected in the lysates of IFN-gamma-treated but not in untreated RAW 264.7 cells. The IFN-gamma-treated RAW 264.7 cells which express iNOS not only were resistant to productive infection but also efficiently blocked the replication of VV in infected bystander cells of epithelial origin. This inhibition was arginine dependent, correlated with nitric production in cultures, and was reversible by the NOS inhibitor N omega-monomethyl-L-arginine.  相似文献   

4.
Bacterial products such as cell walls (CW) and peptidoglycan (PGN) are known to activate macrophages and NK cells during microbial infections. In this report, we demonstrated that whole CW and PGN of four Gram-positive bacteria are capable of enhancing the anti-poxviral activity of murine macrophage RAW 264.7 cells. Among the major Bacillus alcalophilus CW components, PGN contributes the most to antiviral activity and induces remarkably higher levels of IFN-alpha. Anti-IFN-alpha/beta antibody, but not anti-IFN-gamma, anti-IFN-gamma receptor, or anti-IL-12, reversed the PGN-induced inhibition of vaccinia virus replication and reduced nitric oxide (NO) production. Our data thus suggest that PGN induce antiviral activity through IFN-alpha and to a lesser extent, through NO production.  相似文献   

5.
6.
7.
The effect of antitumor antibiotic neocarzinostatin on DNA replication in HeLa cells was studied by pulse-labeling of DNA with [3H]thymidine and sedimentation analysis of the DNA with alkaline sucrose gradients. The drug, which produced DNA damage, primarily inhibited the replicon initiation in the cells at low doses (less than or equal to 0.1 microgram/ml), and at high doses (greater than or equal to 0.5 microgram/ml) inhibited the DNA chain elongation. An analysis of the number of single-strand breaks of parental DNA, induced by neocarzinostatin, indicated that inhibition of the initiation occurred with introduction of single-strand breaks of less than 1.5 . 10(4)/cell, while inhibition of the elongation occurred with introduction of single-strand breaks of more than 7.5 . 10(4)/cell. Assuming that the relative molecular mass of DNA/HeLa cell was about 10(13) Da, the target size of DNA for inhibition of replicon initiation was calculated to be about 10(9) Da, such being close to an average size of loop DNA in the cell and for inhibition of chain elongation, 1-2 . 10(8) Da which was of the same order of magnitude as the size of replicons. Recovery of inhibited DNA replication by neocarzinostatin occurred during post-incubation of the cells and seemed to correlate with the degree of rejoining of the single-strand breaks of parental DNA. Caffeine and theophylline enhanced the recovery of the inhibited replicon initiation, but did not aid in the repair of the breaks in parental DNA.  相似文献   

8.
It has previously been shown that upon infection of HeLa cells with modified vaccinia virus Ankara (MVA), assembly is blocked at a late stage of infection and immature virions (IVs) accumulate (G. Sutter and B. Moss, Proc. Natl. Acad. Sci. USA 89:10847-10851, 1992). In the present study the morphogenesis of MVA in HeLa cells was studied in more detail and compared to that under two conditions that permit the production of infectious particles: infection of HeLa cells with the WR strain of vaccinia virus (VV) and infection of BHK cells with MVA. Using several quantitative and qualitative assays, we show that early in infection, MVA in HeLa cells behaves in a manner identical to that under the permissive conditions. By immunofluorescence microscopy (IF) at late times of infection, the labelings for an abundant membrane protein of the intracellular mature virus, p16/A14L, and the viral DNA colocalize under permissive conditions, whereas in HeLa cells infected with MVA these two structures do not colocalize to the same extent. In both permissive and nonpermissive infection, p16-labeled IVs first appear at 5 h postinfection. In HeLa cells infected with MVA, IVs accumulated predominantly outside the DNA regions, whereas under permissive conditions they were associated with the viral DNA. At 4 h 30 min, the earliest time at which p16 is detected, the p16 labeling was found predominantly in a small number of distinct puncta by IF, which were distinct from the sites of DNA in both permissive and nonpermissive infection. By electron microscopy, no crescents or IVs were found at this time, and the p16-labeled structures were found to consist of membrane-rich vesicles that were in continuity with the cellular endoplasmic reticulum. Over the next 30 min of infection, a large number of p16-labeled crescents and IVs appeared abruptly under both permissive and nonpermissive conditions. Under permissive conditions, these IVs were in close association with the sites of DNA, and a significant amount of these IVs engulfed the viral DNA. In contrast, under nonpermissive conditions, the IVs and DNA were mostly in separate locations and relatively few IVs acquired DNA. Our data show that in HeLa cells MVA forms normal DNA replication sites and normal viral precursor membranes but the transport between these two structures is inhibited.  相似文献   

9.
10.
Cells of the C3H10T12CL8 line, which are nonmyoblastic in nature, form functional myotubes when treated with low concentrations of 5-azacytidine. Further characterization of the myotubes revealed that they arise from the fusion of mononucleated precursors and not as a result of endoreplication. They accumulate histochemically detectable myosin ATPase activity as well as acetylcholine receptors capable of binding radioactively labeled α-bungarotoxin. The deoxy analog, 5-aza-2′-deoxycytidine, induced myogenic conversion at one-tenth of the maximally effective concentration of 5-azacytidine. The ability of both analogs to induce myotube formation and to cause cytotoxicity was strongly influenced by cotreatment with certain pyrimidine nucleosides. These effects were consistent with a requirement for metabolism of both aza compounds to phosphorylated derivatives and with a mechanism of action based on their incorporation into DNA. Concentrations of the analogs causing myogenic conversion did not substantially alter rates of DNA, RNA, or protein synthesis as measured by precursor incorporation into intact cells. The induction of myotubes by 5-azacytidine in cells synchronized by two different methods required that treatment with the analog was carried out at a critical phase early in S phase. Thus the mechanism of drug action appears to be linked to specific DNA synthesis.  相似文献   

11.
12.
Growth inhibition by vaccinia virus growth factor   总被引:1,自引:0,他引:1  
Vaccinia virus growth factor (VGF), a highly glycosylated 77-residue epidermal growth factor (EGF)-like polypeptide encoded in vaccinia poxvirus, is reported to play an important role in stimulating growth of uninfected cells to facilitate virus infection. We have chemically synthesized the unglycosylated forms of VGF and VGF19-69, a shortened VGF analog consisting of 51 residues and comprising the EGF-homologous region (position 19-69) of VGF. Both synthetic forms of VGFs were purified to homogeneity and vigorously characterized by various criteria, including the Cf-252 ion fission fragment mass spectrometry, amino acid sequencing, and enzymatic digestion to confirm the disulfide linkages. Synthetic VGFs exhibited high affinity binding to the EGF receptors in A431, NRK 49F, NRK clone 3, and NIH 3T3 cells, but, unlike the glycosylated form, showed contrasting mitogenic activities in various cells in vitro. Synthetic VGFs showed low levels of mitogenic and colonogenic activities in NRK clone 49F cells and NIH 3T3 cells, full agonist activities in human keratinocytes and Swiss 3T3 cells, and partial agonist activities in NRK clone 3 cells. Our results suggest that the unglycosylated form of VGF is an EGF antagonist to selected cells and that the production of unglycosylated form of VGF by the cytolytic vaccinia virus may serve as a mechanism whereby inhibition of growth and metabolism of selected host cells may be used to facilitate the propagation of the virus infection.  相似文献   

13.
The replication of vaccinia virus is thought to take place exclusively in the cytoplasm of host cells. However, using DNA-DNA hybridization techniques, it can be shown that a significant fraction of the synthesis of vaccinia DNA takes place in the nucleus as well as the cytoplasm. The (3H) thymiding pulse-labeled vaccinia DNA synthesized in the nucleus reaches a maximum at about 3 h after infection, corresponding to the time of maximal DNA synthesis in infected cells. At this time host DNA synthesis drops to about 25% of the rate of the uninfected cells. Even with short labeling times (2 min) the nucleus is found to contain 60% of the incorporated (3H)thymidine, much of which is in vaccinia DNA. Prior inhibition of host nuclear DNA synthesis with mitomycin C, followed by removal of the antibiotic causes a subsequent inhibition of vaccinia DNA synthesis and complete suppression of mature virus. Purified nuclei, isolated from vaccinia-infected cells, also synthesize vaccinia DNA in vitro. Over 90% of the DNA synthesized in vitro by isolated nuclei contain vaccinia-specific sequences.  相似文献   

14.
15.
P Ward  K I Berns 《Journal of virology》1996,70(7):4495-4501
Previously we have described an in vitro assay for the replication of adeno-associated virus type 2 (AAV2) DNA. Addition of the AAV2 nonstructural protein Rep68 to an extract from uninfected cells supports the replication of linear duplex AAV DNA. In this report, we examine replication of linear duplex AAV DNA in extracts from either uninfected or adenovirus (Ad)-infected HeLa cells. The incorporation of radiolabeled nucleotides into full-length linear AAV DNA is 50-fold greater in extracts from Ad-infected cells than in extracts from uninfected cells. In addition, the majority of the labeled full-length AAV DNA molecules synthesized in the Ad-infected extract have two newly replicated strands, whereas the majority of labeled full-length AAV DNA molecules synthesized in the uninfected extract have only one newly replicated strand. The numbers of replication initiations on original templates in the two assays are approximately the same; however, replication in the case of the Ad-infected cell extract is much more likely to result in the synthesis of a full-length AAV DNA molecule. Most of the newly replicated molecules in the assay using uninfected cell extracts are in the form of stem-loop structures. We hypothesize that Ad infection provides a helper function related to elongation during replication by a single-strand displacement mechanism. In the assay using the uninfected HeLa cell extract, replication frequently stalls before reaching the end of the genome, causing the newly synthesized strand to be displaced from the template, with a consequent folding on itself and replication back through the inverted terminal repeat, using itself as a template. In support of this conjecture, replication in the uninfected cell extract of shorter substrate molecules is more efficient, as measured by incorporation of radiolabeled nucleotides into full-length substrate DNA. In addition, when shorter substrate molecules are used as the template in the uninfected HeLa cell assay, a greater proportion of the labeled full-length substrate molecules contain two newly replicated strands. Shorter substrate molecules have no replicative advantage over full-length substrate molecules in the assay using an extract from Ad-infected cells.  相似文献   

16.
17.
18.
Synthesis of polynucleotide 5'-triphosphatase, which is presumably involved in the initial modification in the series of reactions by which 5'-termini of vaccinia mRNA become capped and methylated, has been demonstrated in vaccinia virus infected HeLa cells. Synthesis of the enzyme is prevented by actinomycin D and cycloheximide, suggesting that both de novo DNA-dependent RNA and protein syntheses are required. On the other hand, cytosine arabinoside, an inhibitor of viral DNA replication, does not prevent induction of the enzyme. The latter observation, together with the kinetics of synthesis of the enzyme in vaccinia virus-infected HeLa cells, suggests that polynucleotide 5'-triphosphatase is an "early" or prereplicative viral protein. Immunologlobulin produced against the purified virion-associated polynucleotide 5'-triphosphatase as antigen neutralized the activity of the induced polynucleotide 5'-triphosphatase, thus indicating the identity of the two enzymes.  相似文献   

19.
We have demonstrated previously that the core protein of hepatitis C virus (HCV) exhibits suppression activity on gene expression and replication of hepatitis B virus (HBV). Here we further elucidated the suppression mechanism of HCV core protein. We demonstrated that HCV core protein retained the inhibitory effect on HBV gene expression and replication when expressed as part of the full length of HCV polyprotein. Based on the substitution mutational analysis, our results suggested that mutation introduced into the bipartite nuclear localization signal of the HCV core protein resulted in the cytoplasmic localization of core protein but did not affect its suppression ability on HBV gene expression. Mutational studies also indicated that almost all dibasic residue mutations within the N-terminal 101-amino acid segment of the HCV core protein (except Arg(39)-Arg(40)) impaired the suppression activity on HBV replication but not HBV gene expression. The integrity of Arg residues at positions 101, 113, 114, and 115 was found to be essential for both suppressive effects, whereas the Arg residue at position 104 was important only in the suppression of HBV gene expression. Moreover, our results indicated that the suppression on HBV gene expression was mediated through the direct interaction of HCV core protein with the trans-activator HBx protein, whereas the suppression of HBV replication involved the complex formation between HBV polymerase (pol) and the HCV core protein, resulting in the structural incompetence for the HBV pol to bind the package signal and consequently abolished the formation of the HBV virion. Altogether, this study suggests that these two suppression effects on HBV elicited by the HCV core protein likely depend on different structural context but not on nuclear localization of the core protein, and the two effects can be decoupled as revealed by its differential targets (HBx or HBV pol) on these two processes of the HBV life cycle.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号